Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 13150-13160, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437159

ABSTRACT

Over the years, various processing techniques have been explored to synthesize three-dimensional graphene (3DG) composites with tunable properties for advanced applications. In this work, we have demonstrated a new procedure to join a 3D graphene sheet (3DGS) synthesized by chemical vapor deposition (CVD) with a commercially available carbon veil (CV) via cold rolling to create 3DGS-CV composites. Characterization techniques such as scanning electron microscopy (SEM), Raman mapping, X-ray diffraction (XRD), electrical resistance, tensile strength, and Seebeck coefficient measurements were performed to understand various properties of the 3DGS-CV composite. Extrusion of 3DGS into the pores of CV with multiple microinterfaces between 3DGS and the graphitic fibers of CV was observed, which was facilitated by cold rolling. The extruded 3D graphene revealed pristine-like behavior with no change in the shape of the Raman 2D peak and Seebeck coefficient. Thermoelectric (TE) power generation and photothermoelectric responses have been demonstrated with in-plane TE devices of various designs made of p-type 3DGS and n-type CV couples yielding a Seebeck coefficient of 32.5 µV K-1. Unlike various TE materials, 3DGS, CV, and the 3DGS-CV composite were very stable at high relative humidity. The 3DGS-CV composite revealed a thin, flexible profile, good moisture and thermal stability, and scalability for fabrication. These qualities allowed it to be successfully tested for temperature monitoring of a Li-ion battery during charging cycles and for large-area temperature mapping.

2.
ACS Omega ; 6(43): 29009-29021, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746590

ABSTRACT

Earlier, various attempts to develop graphene structures using chemical and nonchemical routes were reported. Being efficient, scalable, and repeatable, 3D printing of graphene-based polymer inks and aerogels seems attractive; however, the produced structures highly rely on a binder or an ice support to stay intact. The presence of a binder or graphene oxide hinders the translation of the excellent graphene properties to the 3D structure. In this communication, we report our efforts to synthesize a 3D-shaped 3D graphene (3D2G) with good quality, desirable shape, and structure control by combining 3D printing with the atmospheric pressure chemical vapor deposition (CVD) process. Direct ink writing has been used in this work as a 3D-printing technique to print nickel powder-PLGA slurry into various shapes. The latter has been employed as a catalyst for graphene growth via CVD. Porous 3D2G with high purity was obtained after etching out the nickel substrate. The conducted micro CT and 2D Raman study of pristine 3D2G revealed important features of this new material. The interconnected porous nature of the obtained 3D2G combined with its good electrical conductivity (about 17 S/cm) and promising electrochemical properties invites applications for energy storage electrodes, where fast electron transfer and intimate contact with the active material and with the electrolyte are critically important. By changing the printing design, one can manipulate the electrical, electrochemical, and mechanical properties, including the structural porosity, without any requirement for additional doping or chemical postprocessing. The obtained binder-free 3D2G showed a very good thermal stability, tested by thermo-gravimetric analysis in air up to 500 °C. This work brings together two advanced manufacturing approaches, CVD and 3D printing, thus enabling the synthesis of high-quality, binder-free 3D2G structures with a tailored design that appeared to be suitable for multiple applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...