Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Mutagenesis ; 27(4): 445-51, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22334599

ABSTRACT

Variation in xenobiotic metabolism cannot entirely be explained by genetic diversity in metabolic enzymes. We suggest that maternal diet during gestation can contribute to variation in metabolism by creating an in utero environment that shapes the offspring's defence against chemical carcinogens. Therefore, pregnant mice were supplemented with the natural aryl hydrocarbon receptor (AhR) agonist quercetin (1 mmol quercetin/kg feed) until delivery. Next, it was investigated whether the adult offspring at the age of 12 weeks had altered biotransformation of the environmental pollutant benzo[a]pyrene (B[a]P). In utero quercetin exposure resulted in significantly enhanced gene expression of Cyp1a1, Cyp1b1, Nqo1 and Ugt1a6 in liver of foetuses at Day 14.5 of gestation. Despite cessation of supplementation after delivery, altered gene expression persisted into adulthood, but in a tissue- and gender-dependent manner. Expression of Phase I enzymes (Cyp1a1 and Cyp1b1) was up-regulated in the liver of adult female mice in utero exposed to quercetin, whereas expression of Phase II enzymes (Gstp1, Nqo1 and Ugt1a6) was predominantly enhanced in the lung tissue of female mice. Epigenetic mechanisms may contribute to this adapted gene expression, as the repetitive elements (SINEB1) were hypomethylated in liver of female mice prenatally exposed to quercetin. Studies on ex vivo metabolism of B[a]P by lung and liver microsomes showed that the amount of B[a]P-9,10-dehydrodiol, B[a]P-7,8-dihydrodiol and 3-hydroxy-B[a]P did not change, but the amount of unmetabolised B[a]P was significantly lower after incubation with lung microsomes from offspring that received quercetin during gestation. Moreover, ex vivo B[a]P-induced DNA adduct formation was significantly lower for liver microsomes of offspring that were exposed to quercetin during gestation. These results suggest that prenatal diet leads to persistent alterations in Phase I and II enzymes of adult mice and may affect cancer risk.


Subject(s)
Antioxidants/pharmacology , Benzo(a)pyrene/metabolism , DNA Adducts/metabolism , DNA Damage/drug effects , Microsomes, Liver/drug effects , Prenatal Exposure Delayed Effects/metabolism , Quercetin/pharmacology , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1 , Female , Liver/cytology , Liver/drug effects , Liver/enzymology , Lung/cytology , Lung/drug effects , Lung/enzymology , Male , Mice , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
3.
Proc Natl Acad Sci U S A ; 104(40): 15911-6, 2007 Oct 02.
Article in English | MEDLINE | ID: mdl-17895389

ABSTRACT

In vitro whole-cell recordings of the inferior olive have demonstrated that its neurons are electrotonically coupled and have a tendency to oscillate. However, it remains to be shown to what extent subthreshold oscillations do indeed occur in the inferior olive in vivo and whether its spatiotemporal firing pattern may be dynamically generated by including or excluding different types of oscillatory neurons. Here, we did whole-cell recordings of olivary neurons in vivo to investigate the relation between their subthreshold activities and their spiking behavior in an intact brain. The vast majority of neurons (85%) showed subthreshold oscillatory activities. The frequencies of these subthreshold oscillations were used to distinguish four main olivary subtypes by statistical means. Type I showed both sinusoidal subthreshold oscillations (SSTOs) and low-threshold Ca(2+) oscillations (LTOs) (16%); type II showed only sinusoidal subthreshold oscillations (13%); type III showed only low-threshold Ca(2+) oscillations (56%); and type IV did not reveal any subthreshold oscillations (15%). These subthreshold oscillation frequencies were strongly correlated with the frequencies of preferred spiking. The frequency characteristics of the subthreshold oscillations and spiking behavior of virtually all olivary neurons were stable throughout the recordings. However, the occurrence of spontaneous or evoked action potentials modified the subthreshold oscillation by resetting the phase of its peak toward 90 degrees . Together, these findings indicate that the inferior olive in intact mammals offers a rich repertoire of different neurons with relatively stable frequency settings, which can be used to generate and reset temporal firing patterns in a dynamically coupled ensemble.


Subject(s)
Neurons/physiology , Olivary Nucleus/physiology , Animals , Cell Membrane/physiology , Cerebellum/physiology , Membrane Potentials/physiology , Mice , Sensitivity and Specificity , Sensory Thresholds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...