Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Cancer ; 11(2): 126-140, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35634422

ABSTRACT

Introduction: Hepatocellular carcinoma and hepatoblastoma are two liver cancers characterized by gene deregulations, chromosomal rearrangements, and mutations in Wnt/beta-catenin (Wnt) pathway-related genes. LHX2, a transcriptional factor member of the LIM homeobox gene family, has important functions in embryogenesis and liver development. LHX2 is oncogenic in many solid tumors and leukemia, but its role in liver cancer is unknown. Methods: We analyzed the expression of LHX2 in hepatocellular carcinoma and hepatoblastoma samples using various transcriptomic datasets and biological samples. The role of LHX2 was studied using lentiviral transduction, in vitro cell-based assays (growth, migration, senescence, and apoptosis), molecular approaches (phosphokinase arrays and RNA-seq), bioinformatics, and two in vivo models in chicken and Xenopus embryos. Results: We found a strong connection between LHX2 downregulation and Wnt activation in these two liver cancers. In hepatoblastoma, LHX2 downregulation correlated with multiple poor outcome parameters including higher patient age, intermediate- and high-risk tumors, and low patient survival. Forced expression of LHX2 reduced the proliferation, migration, and survival of liver cancer cells in vitro through the inactivation of MAPK/ERK and Wnt signals. In vivo, LHX2 impeded the development of tumors in chick embryos and repressed the Wnt pathway in Xenopus embryos. RNA-sequencing data and bioinformatic analyses confirmed the deregulation of many biological functions and molecular processes associated with cell migration, cell survival, and liver carcinogenesis in LHX2-expressing hepatoma cells. At a mechanistic level, LHX2 mediated the disassembling of beta-catenin/T-cell factor 4 complex and induced expression of multiple inhibitors of Wnt (e.g., TLE/Groucho) and MAPK/ERK (e.g., DUSPs) pathways. Conclusion: Collectively, our findings demonstrate a tumor suppressive function of LHX2 in adult and pediatric liver cancers.

2.
Commun Biol ; 4(1): 1390, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903822

ABSTRACT

Despite recent progress in the characterization of tumour components, the tri-dimensional (3D) organization of this pathological tissue and the parameters determining its internal architecture remain elusive. Here, we analysed the spatial organization of patient-derived xenograft tissues generated from hepatoblastoma, the most frequent childhood liver tumour, by serial block-face scanning electron microscopy using an integrated workflow combining 3D imaging, manual and machine learning-based semi-automatic segmentations, mathematics and infographics. By digitally reconstituting an entire hepatoblastoma sample with a blood capillary, a bile canaliculus-like structure, hundreds of tumour cells and their main organelles (e.g. cytoplasm, nucleus, mitochondria), we report unique 3D ultrastructural data about the organization of tumour tissue. We found that the size of hepatoblastoma cells correlates with the size of their nucleus, cytoplasm and mitochondrial mass. We also found anatomical connections between the blood capillary and the planar alignment and size of tumour cells in their 3D milieu. Finally, a set of tumour cells polarized in the direction of a hot spot corresponding to a bile canaliculus-like structure. In conclusion, this pilot study allowed the identification of bioarchitectural parameters that shape the internal and spatial organization of tumours, thus paving the way for future investigations in the emerging onconanotomy field.


Subject(s)
Hepatoblastoma/ultrastructure , Image Processing, Computer-Assisted , Liver Neoplasms/ultrastructure , Machine Learning , Microscopy, Electron, Scanning , Child , Humans , Pilot Projects
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768967

ABSTRACT

Mitogen-activated protein kinases (MAPKs) are essential for proper cell functioning as they regulate many molecular effectors. Careful regulation of MAPKs is therefore required to avoid MAPK pathway dysfunctions and pathologies. The mammalian genome encodes about 200 phosphatases, many of which dephosphorylate the MAPKs and bring them back to an inactive state. In this review, we focus on the normal and pathological functions of dual-specificity phosphatase 9 (DUSP9)/MAP kinase phosphatases-4 (MKP-4). This cytoplasmic phosphatase, which belongs to the threonine/tyrosine dual-specific phosphatase family and was first described in 1997, is known to dephosphorylate ERK1/2, p38, JNK and ASK1, and thereby to control various MAPK pathway cascades. As a consequence, DUSP9 plays a major role in human pathologies and more specifically in cardiac dysfunction, liver metabolic syndromes, diabetes, obesity and cancer including drug response and cell stemness. Here, we recapitulate the mechanism of action of DUSP9 in the cell, its levels of regulation and its roles in the most frequent human diseases, and discuss its potential as a therapeutic target.


Subject(s)
Dual-Specificity Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Animals , Dual-Specificity Phosphatases/chemistry , Dual-Specificity Phosphatases/genetics , Female , Gene Expression Regulation, Enzymologic , Heart Diseases/enzymology , Humans , MAP Kinase Signaling System , Male , Metabolic Diseases/enzymology , Metabolic Networks and Pathways , Mice , Mitogen-Activated Protein Kinase Phosphatases/chemistry , Mitogen-Activated Protein Kinase Phosphatases/genetics , Models, Molecular , Mouse Embryonic Stem Cells/enzymology , Neoplasms/enzymology , Protein Conformation , Sex Characteristics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...