Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 388: 110834, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38103879

ABSTRACT

The present study investigates the anti-neoplastic activity of a platinum (II) complex, Pt(II)5ClSS, and its platinum (IV) di-hydroxido analogue, Pt(IV)5ClSS, against mesenchymal cells (MCs), lung (A549), melanoma (A375) and breast (MDA-MB-231) cancer cells. Both complexes exhibited up to 14-fold improved cytotoxicity compared to cisplatin. NMR was used to determine that ∼25 % of Pt(IV)5ClSS was reduced to Pt(II)5ClSS in the presence of GSH (Glutathione) after 72 h. The complex 1H NMR spectra acquired for Pt(II)5ClSS with GSH shows evidence of degradation and environmental effects (∼30 %). The prominence of the 195Pt peak at âˆ¼ -2800 ppm suggests that a significant amount of Pt(II)5ClSS remained in the mixture. Pt(II)5ClSS and Pt(IV)5ClSS have shown exceptional selectivity to cancer cells in comparison to MCs (IC50 > 150 µM). Western blot analysis of Pt(II)5ClSS and Pt(IV)5ClSS on A549 cells revealed significant upregulation of cleaved PARP-1, BAX/Bcl2 ratio, cleaved caspase 3 and cytochrome thus suggesting apoptosis was induced through the intrinsic pathway. Flow cytometry also revealed significant cell death by apoptosis. Treatment with Pt(II)5ClSS and Pt(IV)5ClSS also showed significant amounts of free radical production while the COMET assay showed that both complexes cause minimal DNA damage. Cellular uptake results via ICP-MS suggest a time-dependent active mode of transport for both complexes with Pt(II)5ClSS being transported at a higher rate compared to Pt(IV)5ClSS. A Dose Escalation Study carried out on BALB/c mice showed that Pt(II)5ClSS and Pt(IV)5ClSS were approximately 8- folds and 12.5-folds, respectively, more tolerated than cisplatin. The present study provides evidence that both complexes may have the characteristics of an efficient and potentially safe anti-tumor drug that could support NSCLC treatment.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Prodrugs , Animals , Mice , Cisplatin/pharmacology , Cisplatin/chemistry , Platinum/chemistry , Prodrugs/chemistry , Lung Neoplasms/drug therapy , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis
2.
J Med Chem ; 65(24): 16481-16493, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36480933

ABSTRACT

A novel platinum(II) complex 47OMESS(II) and its platinum(IV) derivative 47OMESS(IV) were synthesized and characterized. Cytotoxicity studies against mesenchymal cells (MCs) and lung (A549), breast (MDA-MB-231), and melanoma (A375) cancer cells demonstrated 7-20-fold superior activity for both complexes relative to cisplatin. Remarkably, 47OMESS(IV) demonstrated 17-22-fold greater selectivity toward the cancerous cells compared to the non-cancerous MCs. Western blot analysis on A549 cells showed the involvement of the intrinsic apoptotic pathway. Cellular fractionation and uptake experiments in A549 cells using ICP-mass spectrometry (MS) indicated that 47OMESS(II) and 47OMESS(IV) cross the cellular membrane predominantly via active transport mechanisms. The significant improvement in selectivity that is exhibited by 47OMESS(IV) is reported for the first time for this class of complexes.


Subject(s)
Antineoplastic Agents , Platinum , Humans , Platinum/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cisplatin/pharmacology , Apoptosis , A549 Cells , Cell Line, Tumor
3.
Pharmaceutics ; 14(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36559273

ABSTRACT

Four platinum(IV) prodrugs incorporating a biotin moiety to selectively target cancer cells were synthesised, characterised, and their biological activity assessed. All complexes exhibited exceptional in vitro cytotoxicity against a panel of cancer cell lines, with [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (2) exhibiting the lowest GI50 of 4 nM in the prostate Du145 cancer cell line. Each complex displayed significantly enhanced activity compared to cisplatin, with 2 being 1000-fold more active in the HT29 colon cancer cell line. Against the MCF-7 breast cancer cell line, in which high levels of biotin receptors are expressed, 2, [Pt(4,7-dimethoxy-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (3), and [Pt(5-methyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (4) exhibited enhanced activity compared to their platinum(II) cores, with 4 being 6-fold more active than its platinum(II) precursor. Furthermore, 3 exhibited 3-fold greater selectivity towards MCF-7 breast cancer cells compared to MCF10A breast healthy cells, and this was further confirmed by platinum uptake studies, which showed 3 to have almost 3-fold greater uptake in MCF-7 cells, compared to MCF10A cells. The results show that lipophilicity and selectivity both contributed to the cellular uptake of 1-4; however, this was not always translated to the observed cytotoxicity.

4.
Pharmaceutics ; 14(4)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35456621

ABSTRACT

Platinum(IV) prodrugs of the [Pt(PL)(AL)(COXi)(OH)]2+ type scaffold (where PL is 1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane, and COXi is a COX inhibitor, either indomethacin or aspirin) were synthesised and characterised, and their biological activity was explored. MTT assays showed that these complexes exhibit outstanding activity against a range of cancer cell lines, and nanomolar activities were observed. The most potent complex, 4, exhibited a GI50 of 3 nM in the Du145 prostate cancer cell line and was observed to display a 1614-fold increased activity against the HT29 colon cancer cell line relative to cisplatin. ICP-MS studies showed a linear correlation between increased cellular accumulation of the complexes and increased cytotoxicity, while an enzyme immunoassay showed that 1 and 2 inhibited COX-2 at 14 and 1.4 µM, respectively, which is comparable to the inhibition exhibited by indomethacin. These results suggest that while the cytotoxicity of prodrugs 1-4 was influenced by cellular uptake, it was not entirely dependent on either COX inhibition or lipophilicity.

5.
J Inorg Biochem ; 207: 111070, 2020 06.
Article in English | MEDLINE | ID: mdl-32299045

ABSTRACT

Current platinum-based drugs used in chemotherapy, like cisplatin and its derivatives, are greatly limited due to side-effects and drug resistance. This has inspired the search for novel platinum-based drugs that deviate from the conventional mechanism of action seen with current chemotherapeutics. This review highlights recent advances in platinum(II) and platinum(IV)-based complexes that have been developed within the past six years. The platinum compounds explored within this review are those that display a more targeted approach by incorporating ligands that act on selected cellular targets within cancer cells. This includes mitochondria, overexpressed receptors or proteins and enzymes that contribute to cancer cell proliferation. These types of platinum compounds have shown significant improvements in anticancer activity and as such, this review highlights the importance of pursuing these new designed platinum drugs for cancer therapy, with the potential of undergoing clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Platinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Ligands , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Organoplatinum Compounds/chemistry , Platinum/chemistry , Platinum Compounds/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...