Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 179: 110470, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38917733

ABSTRACT

The present study reports the new thiazole (A-L) derivatives based on benzothiazole fused triazole which were synthesized and assessed against thymidine phosphorylase and α-glucosidase enzymes. Several compounds with the same basic structure but different substituents were found to have high activity against the targeted enzymes, while others with the same basic skeleton but different substituents were found to have medium to low activity among the members of tested series. These analogs showed a varied range of inhibition in both case thymidine phosphorylase and alpha glucosidase, A (IC50 = 7.20 ± 0.30 µM and IC50 = 1.30 ± 0.70 µM), B (IC50 = 8.80 ± 0.10 µM and IC50 = 2.10 ± 0.30 µM), C (IC50 = 8.90 ± 0.40 µM and IC50 = 3.20 ± 0.20 µM) and thiazole containing analogs such as G (IC50 = 11.10 ± 0.20 µM and IC50 = 7.80 ± 0.20 µM) and H (IC50 = 12.30 ± 0.30 µM and IC50 = 6.30 ± 0.20 µM). When compared with standard drugs 7-Deazaxanthine, 7DX (IC50 = 10.60 ± 0.50 µM) and acarbose (IC50 = 4.30 ± 0.30 µM) respectively. These analogs were also subjected to molecular docking studies which indicated the binding interaction of molecules with active sites of the enzyme and strengthen the drug profile of these compounds. ADMET studies also predict the drug-like properties of these compounds, with no violations of drug likeness rules.

2.
J Contam Hydrol ; 264: 104362, 2024 May.
Article in English | MEDLINE | ID: mdl-38735087

ABSTRACT

A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1-3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g-1 for MB and 654 mg g-1 for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.


Subject(s)
Anti-Bacterial Agents , Graphite , Hydrogels , Water Pollutants, Chemical , Graphite/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/chemistry , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Water Purification/methods , Polymers/chemistry , Methylene Blue/chemistry , Plastics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...