Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 102: 109722, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32171494

ABSTRACT

The success of lumbar interbody fusion, the key surgical procedure for treating different pathologies of the lumbar spine, is highly dependent on determining the patient-specific lumbar lordosis (LL) and restoring sagittal balance. This study aimed to (1) develop a personalized finite element (FE) model that automatically updates spinal geometry for different patients; and (2) apply this technique to study the influence of LL on post-fusion spinal biomechanics. Using an X-Ray image-based algorithm, the geometry of the lumbar spine (L1-S1) was updated using independent parameters. Ten subject-specific nonlinear osteoligamentous FE models were developed based on pre-operative images of fusion surgery candidate patients. Post-operative FE models of the same patients were consequently created. Comparison of the obtained results from FE models with pre- and post-operation functional images demonstrated the potential value of this technique in clinical applications. A parametric study of the effect of LL was conducted for cases with zero LL angle, positive LL angles (+6° and +12°) and negative LL angles (-3° and -6°) on fused level (L4-L5), resulting in a total of 50 fusion simulation models. The average range of motion, intradiscal pressure, and fiber strain at adjacent levels were significantly higher with decreased LL during different directions except axial rotation. This study demonstrates that the LL alters both the intersegmental motion and load-sharing in fusion, which may influence the initiation and rate of adjacent level degeneration. This personalized FE platform provides a practical, clinically applicable approach for the analyses of the biomechanical changes associated with lumbar spine fusion.


Subject(s)
Finite Element Analysis , Lordosis/surgery , Lumbar Vertebrae/surgery , Spinal Fusion , Adult , Animals , Biomechanical Phenomena , Female , Humans , Lordosis/diagnostic imaging , Lordosis/physiopathology , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Male , Middle Aged , Radiography
2.
Comput Biol Med ; 109: 22-32, 2019 06.
Article in English | MEDLINE | ID: mdl-31035068

ABSTRACT

Epidemiological and clinical studies show that the magnitude and scope of cervical disease are on the rise, along with the world's rising aging population. From a biomechanical perspective, the cervical spine presents a wide inter-individual variability, where its motion patterns and load sharing strongly depend on the anatomy. This study aimed to first develop and validate a geometrically patient-specific model of the lower cervical spine for clinical applications, and secondly to use the model to investigate the spinal biomechanics associated with typical cervical disorders. Based on measurements of 30 parameters from X-ray radiographs, the 3D geometry of the vertebrae and intervertebral discs (IVDs) were developed, and detailed finite element models (FEMs) of the lower ligamentous cervical spine for 6 subjects were constructed and simulated. The models were then used for the investigation of different grades of IVD alteration. The multi directional range of motion (ROM) results were in alignment with the in-vitro and in-Silico studies confirming the validity of the model. Severe disc alteration (Grade 3) presented a significant decrease in the ROM and intradiscal pressure (flexion, extension, and axial rotation) on the C5-C6 and slightly increase on the adjacent levels. Maximum stress in Annulus Fibrosus (AF) and facet joint forces increased for Grade 3 for both altered and adjacent levels. The novel validated geometrically-personalized FEM presented in this study potentially offers the clinical community a valuable quantitative tool for the noninvasive analyses of the biomechanical alterations associated with cervical spine disease towards improved surgical planning and enhanced clinical outcomes.


Subject(s)
Cervical Vertebrae , Imaging, Three-Dimensional , Intervertebral Disc , Precision Medicine , Tomography, X-Ray Computed , Aged , Biomechanical Phenomena , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/physiopathology , Finite Element Analysis , Humans , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/physiopathology , Male , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...