Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 3(2): e679, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36809687

ABSTRACT

To cope with DNA damage, mitochondria have developed a pathway whereby severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules can be discarded and degraded, after which new molecules are synthesized using intact templates. In this unit, we describe a method that harnesses this pathway to eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil-N-glycosylase (mUNG1) in mitochondria. We also provide alternate protocols for mtDNA elimination using either combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC) or clustered regulatory interspersed short palindromic repeat (CRISPR)-Cas9-mediated knockout of TFAM or other genes essential for mtDNA replication. Support protocols detail approaches for several processes: (1) genotyping ρ0 cells of human, mouse, and rat origin by polymerase chain reaction (PCR); (2) quantification of mtDNA by quantitative PCR (qPCR); (3) preparation of calibrator plasmids for mtDNA quantification; and (4) quantification of mtDNA by direct droplet digital PCR (dddPCR). © 2023 Wiley Periodicals LLC. Basic Protocol: Inducing mtDNA loss with mUNG1 Alternate Protocol 1: Generation of ρ0 cells by mtDNA depletion with EtBr and ddC Alternate Protocol 2: Generation of ρ0 cells by knocking out genes critical for mtDNA replication Support Protocol 1: Genotyping ρ0 cells by DirectPCR Support Protocol 2: Determination of mtDNA copy number by qPCR Support Protocol 3: Preparation of calibrator plasmid for qPCR Support Protocol 4: Determination of mtCN by direct droplet digital PCR (dddPCR).


Subject(s)
DNA, Mitochondrial , Mitochondria , Mice , Rats , Animals , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Polymerase Chain Reaction , DNA Replication , Zalcitabine/metabolism , Zalcitabine/pharmacology , Ethidium/metabolism , Mammals/genetics , Mammals/metabolism
2.
Curr Protoc Cell Biol ; 78(1): 20.11.1-20.11.14, 2018 03.
Article in English | MEDLINE | ID: mdl-30040188

ABSTRACT

To cope with DNA damage, mitochondria developed a pathway by which severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules are abandoned and degraded, and new molecules are resynthesized using intact templates, if available. In this unit, we describe a method that harnesses this pathway to completely eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil-N-glycosylase (mUNG1). We also provide an alternate protocol for mtDNA depletion using combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC). Support protocols detail approaches for (1) genotyping ρ° cells of human, mouse, and rat origin by PCR; (2) quantitation of mtDNA by quantitative PCR (qPCR); and (3) preparation of calibrator plasmids for mtDNA quantitation. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Cells/metabolism , Cytological Techniques/methods , DNA, Mitochondrial/isolation & purification , Mammals/metabolism , Animals , Calibration , Cell Line , Ethidium/metabolism , Gene Dosage , Humans , Mice , Polymerase Chain Reaction , Uracil-DNA Glycosidase/metabolism , Zalcitabine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...