Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(32): 17710-17719, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37545395

ABSTRACT

The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two µ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.

2.
Phys Chem Chem Phys ; 24(44): 27047-27054, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36321744

ABSTRACT

Metal-modified zeolites are versatile catalytic materials with a wide range of industrial applications. Their catalytic behaviour is determined by the nature of externally introduced cationic species, i.e., its geometry, chemical composition, and location within the zeolite pores. Superior catalyst designs can be unlocked by understanding the confinement effect and spatial limitations of the zeolite framework and its influence on the geometry and location of such cationic active sites. In this study, we employ the genetic algorithm (GA) global optimization method to investigate extraframework aluminum species and their structural variations in different zeolite matrices. We focus on extraframework aluminum (EFAl) as a model system because it greatly influences the product selectivity and catalytic stability in several zeolite catalyzed processes. Specifically, the GA was used to investigate the configurational possibilities of EFAl within the mordenite (MOR) and ZSM-5 frameworks. The xTB semi-empirical method within the GA was employed for an automated sampling of the EFAl-zeolite space. Furthermore, geometry refinement at the density functional theory (DFT) level of theory allowed us to improve the most stable configurations obtained from the GA and elaborate on the limitations of the xTB method. A subsequent ab initio thermodynamics analysis (aiTA) was chosen to predict the most favourable EFAl structure(s) under the catalytically relevant operando conditions.

3.
Chem Sci ; 13(13): 3803-3808, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432905

ABSTRACT

The electrocatalytic CO2 reduction reaction (CO2RR) is one of the key technologies of the clean energy economy. Molecular-level understanding of the CO2RR process is instrumental for the better design of electrodes operable at low overpotentials with high current density. The catalytic mechanism underlying the turnover and selectivity of the CO2RR is modulated by the nature of the electrocatalyst, as well as the electrolyte liquid, and its ionic components that form the electrical double layer (EDL). Herein we demonstrate the critical non-innocent role of the EDL for the activation and conversion of CO2 at a high cathodic bias for electrocatalytic conversion over a silver surface as a representative low-cost model cathode. By using a multiscale modeling approach we demonstrate that under such conditions a dense EDL is formed, which hinders the diffusion of CO2 towards the Ag111 electrocatalyst surface. By combining DFT calculations and ab initio molecular dynamics simulations we identify favorable pathways for CO2 reduction directly over the EDL without the need for adsorption to the catalyst surface. The dense EDL promotes homogeneous phase reduction of CO2 via electron transfer from the surface to the electrolyte. Such an outer-sphere mechanism favors the formation of formate as the CO2RR product. The formate can undergo dehydration to CO via a transition state stabilized by solvated alkali cations in the EDL.

4.
ACS Catal ; 12(5): 3189-3200, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35280436

ABSTRACT

The production of valuable aromatics and the rapid catalyst deactivation due to coking are intimately related in the zeolite-catalyzed aromatization reactions. Here, we demonstrate that these two processes can be decoupled by promoting the Ga/HZSM-5 aromatization catalyst with Ca. The resulting bimetallic catalysts combine high selectivity to light aromatics with extended catalyst lifetime in the methanol-to-aromatics process. Evaluation of the catalytic performance combined with detailed catalyst characterization suggests that the added Ca interacts with the Ga-LAS, with a strong effect on the aromatization processes. A genetic algorithm approach complemented by ab initio thermodynamic analysis is used to elucidate the possible structures of bimetallic extraframework species formed under reaction conditions. The promotion effect of minute amounts of Ca is attributed to the stabilization of the intra-zeolite extraframework gallium oxide clusters with moderated dehydrogenation activity.

5.
J Phys Chem Lett ; 12(44): 10906-10913, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34731568

ABSTRACT

Extraframework cations define the chemical versatility of zeolite catalysts. Addressing their structural complexity and dynamic behavior represents one of the main fundamental challenges in the field. Herein, we present a computational approach for the identification and analysis of the accessible pool of intrazeolite extraframework complexes with a Cu/MOR catalyst as an industrially important model system. We employ ab initio molecular dynamics for capturing the ensemble of reactive isomers with the [Cu3O3]2+ stoichiometry confined in the mordenite channels. The high structural diversity of the generated isomers was ensured by concentrating the kinetic energy along the low-curvature directions of the potential energy surface (PES). Geometrically distinct [Cu3O3]2+ complexes were identified via a series of clustering procedures ensuring that one structure of each local minima is retained. The proposed procedure has resulted in a set of previously unknown peroxo-complexes, which are >50 kJ/mol more stable than the recently hypothesized chair-shaped structure. Our analysis demonstrates that the most stable peroxo-containing clusters can be formed under operando conditions from molecular oxygen and the Cu3O unit, similar to that in methane monooxygenase (MMO) enzymes.

6.
Chemistry ; 26(34): 7515, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32452593

ABSTRACT

Invited for the cover of this issue is the collaborative team of researchers from TU Munich, PNNL and TU Delft. Read the full text of the article at 10.1002/chem.202000772.

7.
Chemistry ; 26(34): 7563-7567, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32092206

ABSTRACT

Copper-oxo clusters exchanged in zeolite mordenite are active in the stoichiometric conversion of methane to methanol at low temperatures. Here, we show an unprecedented methanol yield per Cu of 0.6, with a 90-95 % selectivity, on a MOR solely containing [Cu3 (µ-O)3 ]2+ active sites. DFT calculations, spectroscopic characterization and kinetic analysis show that increasing the chemical potential of methane enables the utilization of two µ-oxo bridge oxygen out of the three available in the tricopper-oxo cluster structure. Methanol and methoxy groups are stabilized in parallel, leading to methanol desorption in the presence of water.

8.
Phys Chem Chem Phys ; 20(32): 20785-20795, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29911242

ABSTRACT

Stability is the key property of functional materials. In this work we investigate computationally the degradative potential of a model Mn-BTC (BTC = benzene-1,3,5-tricarboxylate) metal-organic framework (MOF) building block in aqueous solutions under oxidative conditions. Model density functional theory calculations have shown that the direct hydrolysis of the Mn-containing moieties is more difficult than their decomposition via oxidation-induced paths. While the interaction with H2O2 species is of non-covalent nature and requires O-O-bond breaking to initiate Mn-center oxidation, open-shell O2 species readily oxidize radical Mn-centers and form bonds of σ-, π-, or δ-symmetry with the metal. The oxidative transformations of di-Mn paddle-wheel carboxylate structure-forming units are accompanied with substantial distortions of the coordination polyhedra that, together with the increased Lewis acidity of the oxidized metal centers, facilitates the hydrolysis leading to the degradation of the structure at a larger scale. Whereas such a mechanism is expected to hamper the catalytic applications of such Mn-MOFs, the associated structural response to oxidizing and radical species can create a basis for the construction of Mn-MOF-based drug delivery systems with increased bio-compatibility.

9.
Adv Mater ; 29(47)2017 Dec.
Article in English | MEDLINE | ID: mdl-29239521

ABSTRACT

This is a response to a comment on the interpretation of the origin of the nonlinear changes of optical properties of van der Waals' metal-organic frameworks (MOFs). The concerns are addressed by clarifying potential pitfalls in density functional theory (DFT) simulations, careful analysis of prior literature, and additionally discussing the previous experimental results to emphasize the applicability of the excitonic concept in molecular crystals, such as MOFs.

SELECTION OF CITATIONS
SEARCH DETAIL
...