Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(13)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38557849

ABSTRACT

It is shown that the transport coefficients (self-diffusion, shear viscosity, and thermal conductivity) of the Weeks-Chandler-Andersen (WCA) fluid along isotherms exhibit a freezing density scaling (FDS). The functional form of this FDS is essentially the same or closely related to those in the Lennard-Jones fluid, hard-sphere fluid, and some liquefied noble gases. This proves that this FDS represents a quasi-universal corresponding state principle for simple classical fluids with steep interactions. Some related aspects, such as a Stokes-Einstein relation without a hydrodynamic diameter and gas-to-liquid dynamical crossover, are briefly discussed. Simple fitting formulas for the transport coefficients of the dense WCA fluid are suggested.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38661202

ABSTRACT

A modified shoving model is applied to estimate the location of the glass transition in a one-component plasma. The estimated value of the coupling parameter Γ ≃ 570 at the glass transition is compared with other predictions available in the literature.

3.
J Chem Phys ; 158(20)2023 May 28.
Article in English | MEDLINE | ID: mdl-37222299

ABSTRACT

It is demonstrated that self-diffusion and shear viscosity data for the TIP4P/Ice water model reported recently [Baran et al., J. Chem. Phys. 158, 064503 (2023)] obey the microscopic version of the Stokes-Einstein relation without the hydrodynamic diameter.

4.
Phys Rev E ; 108(6-1): 064129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243470

ABSTRACT

Exact mechanisms of thermal conductivity in liquids are not well understood, despite a rich research history. A vibrational model of energy transfer in dense simple liquids with soft pairwise interactions seems adequate to partially fill this gap. The purpose of the present paper is to define its applicability domain and to demonstrate how well it works within the identified applicability domain in the important case of the Lennard-Jones model system. The existing results from molecular dynamics simulations are used for this purpose. Additionally, we show that a freezing density scaling approach represents a very powerful tool to estimate the thermal conductivity coefficient across essentially the entire gas-liquid region of the phase diagram, including metastable regions. A simple practical expression serving this purpose is proposed.

5.
J Chem Phys ; 157(1): 014501, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35803795

ABSTRACT

A freezing density scaling of transport properties of the Lennard-Jones fluid is rationalized in terms of Rosenfeld's excess entropy scaling and isomorph theory of Roskilde-simple systems. Then, it is demonstrated that the freezing density scaling operates reasonably well for viscosity and thermal conductivity coefficients of liquid argon, krypton, and xenon. Quasi-universality of the reduced transport coefficients at their minima and at freezing conditions is discussed. The magnitude of the thermal conductivity coefficient at the freezing point is shown to agree remarkably well with the prediction of the vibrational model of heat transfer in dense fluids.

6.
J Chem Phys ; 156(11): 116101, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35317569

ABSTRACT

It is demonstrated that the crossover between gas- and liquid-like regions on the phase diagram of the Lennard-Jones system occurs at a fixed value of the density divided by its value at the freezing point, ρ/ρfr ≃ 0.35. This definition is consistent with other definitions proposed recently. As a result, a very simple practical expression for the gas-to-liquid crossover line emerges.

7.
Phys Rev E ; 105(2-2): 025202, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291129

ABSTRACT

Complex plasmas consist of microparticles embedded in a low-temperature plasma and allow investigating various effects by tracing the motion of these microparticles. Dust density waves appear in complex plasmas as self-excited acoustic waves in the microparticle fluid at low neutral gas pressures. Here we show that various properties of these waves depend on the position of the microparticle cloud with respect to the plasma sheath and explain this finding in terms of the underlying ion-drift instability. These results may be helpful in better understanding the propagation of dust density waves in complex plasmas and beyond, for instance, in astrophysical dusty plasmas.

8.
J Phys Chem Lett ; 13(12): 2674-2678, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35302377

ABSTRACT

It is demonstrated that the freezing density scaling of transport coefficients in fluids, similar to the freezing temperature scaling, originates from the quasi-universal excess entropy scaling approach proposed by Rosenfeld. The freezing density scaling has a considerably wider applicability domain on the phase diagram of Lennard-Jones and related systems. As an illustration of its predictive power, we show that it reproduces with an excellent accuracy the shear viscosity coefficients of saturated liquid argon, krypton, xenon, and methane.

9.
Phys Rev E ; 104(4-1): 044110, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781514

ABSTRACT

The Stokes-Einstein (SE) relation between the self-diffusion and shear viscosity coefficients operates in sufficiently dense liquids not too far from the liquid-solid phase transition. By considering four simple model systems with very different pairwise interaction potentials (Lennard-Jones, Coulomb, Debye-Hückel or screened Coulomb, and the hard sphere limit) we identify where exactly on the respective phase diagrams the SE relation holds. It appears that the reduced excess entropy s_{ex} can be used as a suitable indicator of the validity of the SE relation. In all cases considered the onset of SE relation validity occurs at approximately s_{ex}≲-2. In addition, we demonstrate that the line separating gaslike and liquidlike fluid behaviours on the phase diagram is roughly characterized by s_{ex}≃-1.

10.
Phys Rev E ; 103(4-1): 042122, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005910

ABSTRACT

It is demonstrated that properly reduced transport coefficients (self-diffusion, shear viscosity, and thermal conductivity) of Lennard-Jones fluids along isotherms exhibit quasi-universal scaling on the density divided by its value at the freezing point. Moreover, this scaling is closely related to the density scaling of transport coefficients of hard-sphere fluids. The Stokes-Einstein relation without the hydrodynamic diameter is valid in the dense fluid regime. The lower density boundary of its validity can serve as a practical demarcation line between gaslike and liquidlike regimes.

11.
Article in English | MEDLINE | ID: mdl-25353581

ABSTRACT

A simple analytical approach to estimate thermodynamic properties of model Yukawa systems is presented. The approach extends the traditional Debye-Hückel theory into the regime of moderate coupling and is able to qualitatively reproduce thermodynamics of Yukawa systems up to the fluid-solid phase transition. The simplistic equation of state (pressure equation) is derived and applied to the hydrodynamic description of the longitudinal waves in Yukawa fluids. The relevance of this study to the topic of complex (dusty) plasmas is discussed.

12.
Article in English | MEDLINE | ID: mdl-24730827

ABSTRACT

Scattering in central attractive potentials is investigated systematically, in the limit of strong interaction, when large-angle scattering dominates. In particular, three important model interactions (Lennard-Jones, Yukawa, and exponential), which are qualitatively different from each other, are studied in detail. It is shown that for each of these interactions the dependence of the scattering angle on the properly normalized impact parameter exhibits a quasiuniversal behavior. This implies simple scaling of the transport cross sections with energy in the considered limit. Accurate fits for the momentum transfer cross section are suggested. Applications of the obtained results are discussed.

13.
Article in English | MEDLINE | ID: mdl-23848791

ABSTRACT

We describe a series of experiments on dust particles' flows in a positive column of a horizontal dc discharge operating in laboratory and microgravity conditions. The main observation is that the particle flow velocities in laboratory experiments are systematically higher than in microgravity experiments for otherwise identical discharge conditions. The paper provides an explanation for this interesting and unexpected observation. The explanation is based on a physical model, which properly takes into account main plasma-particle interaction mechanisms relevant to the described experimental study. A comparison of experimentally measured particle velocities and those calculated using the proposed model demonstrates reasonable agreement, both in laboratory and microgravity conditions, in the entire range of discharge parameters investigated.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066407, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23005228

ABSTRACT

Phase behavior of large three-dimensional (3D) complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting-freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.


Subject(s)
Models, Chemical , Plasma Gases/chemistry , Rheology/methods , Weightlessness , Computer Simulation , Phase Transition
15.
Phys Rev Lett ; 106(20): 205001, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21668236

ABSTRACT

Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

16.
Phys Rev Lett ; 105(4): 045001, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867851

ABSTRACT

Using experiments and combining theory and computer simulations, we show that binary complex plasmas are particularly good model systems to study the kinetics of fluid-fluid demixing at the "atomistic" (individual particle) level. The essential parameters of interparticle interactions in complex plasmas, such as the interaction range(s) and degree of nonadditivity, can be varied significantly, which allows systematic investigations of different demixing regimes. The critical role of competition between long-range and short-range interactions at the initial stage of the spinodal decomposition is discussed.

17.
Phys Rev Lett ; 102(24): 245004, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19659018

ABSTRACT

The effect of the polarization force acting on the grains in a nonuniform plasma background on the propagation of low-frequency waves in complex (dusty) plasmas is analyzed. It is shown that polarization interaction leads to a renormalization (decrease) of the dust acoustic phase velocity. The effect becomes more pronounced as the grain size increases. Finally, there is a critical grain size above which the dust acoustic waves cannot propagate, but aperiodic (nonpropagating) perturbations form instead.

18.
Phys Rev Lett ; 103(25): 255003, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20366260

ABSTRACT

We propose a simple method to approximately predict the freezing (fluid-solid) phase transition in systems of particles interacting via purely repulsive potentials. The method is based on the striking universality of the freezing curve for the model Yukawa and inverse-power-law interactions. This method is applied to draw an exemplary phase diagram of complex plasmas. We suggest that it can also be used to locate freezing transition in other substances with similar properties of interaction.

19.
Phys Rev Lett ; 100(22): 225003, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18643425

ABSTRACT

A simple linear kinetic model is used to investigate the combined effect of plasma absorption and ion-neutral collisions on the electric potential around a small absorbing body in weakly ionized plasmas. It is demonstrated that far from the body the potential decays considerably slower than the conventional Debye-Hückel potential. Moreover, at distances exceeding approximately the ion mean free path, the potential approaches an unscreened Coulomb-like asymptote. Some important consequences of this result are discussed in the context of complex (dusty) plasmas.

20.
Phys Rev Lett ; 100(5): 055002, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18352380

ABSTRACT

Motion of a small charged absorbing body (micrograin) immersed in a stationary weakly ionized high pressure plasma environment is considered. It is shown that the total frictional (drag) force acting on the grain can be directed along its motion, causing the grain acceleration. At some velocity, the forces associated with different plasma components can balance each other, allowing free undamped superfluid motion of the grain. The conditions when such behavior can be realized and the possibility of a superconductive grain current are discussed in the context of complex (dusty) plasmas.

SELECTION OF CITATIONS
SEARCH DETAIL
...