Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 43548, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272471

ABSTRACT

Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

2.
Phys Rev Lett ; 117(14): 144801, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27740829

ABSTRACT

Few-fs electron bunches from laser wakefield acceleration (LWFA) can efficiently drive plasma wakefields (PWFs), as shown by their propagation through underdense plasma in two experiments. A strong and density-insensitive deceleration of the bunches has been observed in 2 mm of 10^{18} cm^{-3} density plasma with 5.1 GV/m average gradient, which is attributed to a self-driven PWF. This observation implies that the physics of PWFs, usually relying on large-scale rf accelerators as drivers, can be studied by tabletop LWFA electron sources.

3.
Nat Commun ; 6: 7568, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26189811

ABSTRACT

X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.

4.
Phys Rev Lett ; 114(19): 195003, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024176

ABSTRACT

We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

5.
Phys Rev Lett ; 110(18): 185006, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683211

ABSTRACT

We report the generation of stable and tunable electron bunches with very low absolute energy spread (ΔE ≈ 5 MeV) accelerated in laser wakefields via injection and trapping at a sharp downward density jump produced by a shock front in a supersonic gas flow. The peak of the highly stable and reproducible electron energy spectrum was tuned over more than 1 order of magnitude, containing a charge of 1-100 pC and a charge per energy interval of more than 10 pC/MeV. Laser-plasma electron acceleration with Ti:sapphire lasers using this novel injection mechanism provides high-quality electron bunches tailored for applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...