Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Chem Ecol ; 49(9-10): 475-481, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37247012

ABSTRACT

We found that vittatalactone, specifically (3R,4R)-3-methyl-4-[(1S,3S,5S)-1,3,5,7-tetramethyloctyl]oxetan-2-one, is the male-produced aggregation pheromone of the western striped cucumber beetle, Acalymma trivittatum (Mannerheim), as was previously shown for the striped cucumber beetle, Acalymma vittatum (F.) (Coleoptera: Chrysomelidae). A synthetic mixture containing 9% of the authentic natural pheromone, is attractive to both sexes of both species in the field, as demonstrated by trapping using baited and unbaited sticky panels in California and earlier in Maryland. Females of both species do not produce detectable vittatalactone. This finding expands the usefulness of the synthetic vittatalactone mixture for pest management throughout the range of both A. vittatum and A. trivittatum. Development of vittatalactone time-release formulations combined with cucurbitacin feeding stimulants offer the potential for selective and environmentally-friendly cucurbit pest management tactics.


Subject(s)
Coleoptera , Cucumis sativus , Male , Female , Animals , Pheromones/pharmacology , Lactones/pharmacology
2.
Insect Biochem Mol Biol ; 152: 103879, 2023 01.
Article in English | MEDLINE | ID: mdl-36470318

ABSTRACT

Insects use diverse arrays of small molecules such as metabolites of the large class of terpenes for intra- and inter-specific communication and defense. These molecules are synthesized by specialized metabolic pathways; however, the origin of enzymes involved in terpene biosynthesis and their evolution in insect genomes is still poorly understood. We addressed this question by investigating the evolution of isoprenyl diphosphate synthase (IDS)-like genes with terpene synthase (TPS) function in the family of stink bugs (Pentatomidae) within the large order of piercing-sucking Hemipteran insects. Stink bugs include species of global pest status, many of which emit structurally related 15-carbon sesquiterpenes as sex or aggregation pheromones. We provide evidence for the emergence of IDS-type TPS enzymes at the onset of pentatomid evolution over 100 million years ago, coinciding with the evolution of flowering plants. Stink bugs of different geographical origin maintain small IDS-type families with genes of conserved TPS function, which stands in contrast to the diversification of TPS genes in plants. Expanded gene mining and phylogenetic analysis in other hemipteran insects further provides evidence for an ancient emergence of IDS-like genes under presumed selection for terpene-mediated chemical interactions, and this process occurred independently from a similar evolution of IDS-type TPS genes in beetles. Our findings further suggest differences in TPS diversification in insects and plants in conjunction with different modes of gene functionalization in chemical interactions.


Subject(s)
Heteroptera , Sesquiterpenes , Animals , Terpenes/metabolism , Pheromones , Phylogeny , Sesquiterpenes/metabolism , Plants/genetics , Plants/metabolism
3.
J Econ Entomol ; 115(3): 748-756, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35417020

ABSTRACT

Flea beetles (Coleoptera: Chrysomelidae) of the genus Phyllotreta are major pests of cole crops, canola, and related crops in the mustard family (Brassicaceae). Adults may damage seedlings or larger crop plants, impairing crop growth, rendering crops unmarketable, or killing seedlings outright. The two major North American crucifer pest species, Phyllotreta striolata (F.) and Phyllotreta cruciferae (Goeze), have male-produced pheromones attractive to both female and male adults. We tested the racemic synthetic pheromones, himachaladiene and hydroxyhimachalanone, as well as the host-plant-produced allyl isothiocyanate, alone and in combination, with experimental trapping in Maryland, Virginia, and North Dakota, using clear and yellow sticky traps and the ground-based 'rocket' trap (modified from boll weevil trap). Phyllotreta striolata was consistently attracted to the hydroxyketone, and captures were often enhanced by allyl isothiocyanate (AITC), but its response to pheromones, AITC, and trap color were variable from state to state. Phyllotreta cruciferae was strongly attracted to AITC, but its response to pheromone components varied by state, and this species was found rarely at the Maryland site. Phyllotreta bipustulata (F.) was attracted to the diene component, a new finding for this species. Several other genera of flea beetles were captured, some showing response to the semiochemicals and/or color. Results will be helpful in monitoring and possibly population suppression; however, further research is necessary to develop more efficient syntheses, optimal lure loadings, combinations, and controlled release methods.


Subject(s)
Brassica napus , Coleoptera , Siphonaptera , Animals , Coleoptera/physiology , Female , Male , Pheromones/pharmacology , Plants
4.
Neotrop Entomol ; 50(2): 282-288, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33595814

ABSTRACT

The rice stalk stink bug, Tibraca limbativentris Stål, is an important rice pest in Brazil, causing significant damage to rice plants and consequently yield losses, with a high invasive potential in Mexico and USA. The male-produced sex pheromone of this species was recently identified as a 7:3 mixture of (3S,6S,7R)-1,10-bisaboladien-3-ol (1) and (3R,6S,7R)-1,10-bisaboladien-3-ol (5) (a.k.a. zingiberenols). The aim of this study was to evaluate field responses of T. limbativentris females to the racemic mixture and stereoisomers of 1,10-bisaboladien-3-ol, including the male-produced sex pheromone. The results obtained in two rice-producing areas of Brazil (Rio Grande do Sul and Santa Catarina) showed that traps baited with the main component 1 alone, the racemic mixture, and a mixture of 1 and 5 were attractive to females of T. limbativentris. The minor component 5 was unable to attract females when used alone. The results indicate that the sex pheromone of T. limbativentris and racemic mixture of 1,10-bisaboladien-3-ol were equally attractive to co-specific females in rice fields, and they could be a tool to incorporate in rice stalk stink bug management programs.


Subject(s)
Heteroptera , Oryza , Pheromones/chemistry , Sesquiterpenes , Sex Attractants , Animals , Female , Sesquiterpenes/chemistry , Sex Attractants/chemistry
5.
J Nat Prod ; 83(7): 2281-2286, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32649187

ABSTRACT

Sesquipiperitol is a sesquiterpene alcohol, some stereoisomers of which were found in several plant species. The biological role of these compounds in plants and their absolute configurations have not been reported. Recently, we found that 1S,6S,7R stereoisomer of sesquipiperitol was a key precursor in the biosynthesis of the harlequin bug, Murgantia histrionica, pheromone, which consists of two stereoisomeric zingiberenol oxides. In addition, the Tibraca limbativentris stink bug was shown to produce two sesquipiperitol stereoisomers as minor components in their male-produced sex pheromone, the main constituents of which were zingiberenols. To determine absolute configurations of plant- and stink-bug-produced sesquipiperitols, we undertook syntheses of all stereoisomers of this sesquiterpene alcohol. The syntheses were based on 1,10-bisaboladien-3-ols (aka zingiberenols) with known configurations at C-6 and C-7, the oxidation of which provided sesquipiperitone precursors with retention of configurations of these stereogenic centers. The foremost challenge of the synthetic endeavor was the assignment of absolute configurations of secondary carbinol centers, which was resolved by NMR analyses of corresponding Mosher's esters. Thus, the availability of all eight diastereomers allowed us to assign sesquipiperitols from Fitzroya cupressoides and Argyranthemum adauctum spp. jacobaeifolium plants 1S,6S,7R (16) and 1R,6R,7S (14) configurations, respectively. A chiral-phase gas-chromatographic method was developed to determine 1S,6S,7R and 1R,6S,7R (15) configurations of T. limbativentris sesquipiperitol pheromone components.


Subject(s)
Heteroptera/chemistry , Plants/chemistry , Sesquiterpenes/chemistry , Animals , Molecular Structure , Oxidation-Reduction , Sesquiterpenes/isolation & purification , Stereoisomerism
6.
J Econ Entomol ; 113(2): 712-719, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31768536

ABSTRACT

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is attracted to its male-produced aggregation pheromone, a ~3.5:1 mixture of (3S,6S,7R,10S)- and (3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol (SSRS and RSRS respectively), and also to the pheromone of its Asian sympatric species Plautia stali Scott (Hemiptera: Pentatomidae), methyl (2E,4E,6Z)-2,4,6-decatrienoate (MDT). A stereoisomeric mixture of (7R) 10,11-epoxy-1-bisabolen-3-ols (= mixed murgantiols) is used together in commercialized products with MDT because the latter is a synergist for H. halys attraction to mixed murgantiols. However, the optimal ratio for MDT combination with mixed murgantiols, and the sensitivity of bug captures to variation in ratio of the two pheromone components, have not been tested to date. Using black pyramid traps at two sites (in Maryland and West Virginia, United States), different ratios of mixed murgantiols to MDT were tested over two entire seasons. Also, captures using various ratios of the two active pheromone stereoisomers were undertaken in month-long trials with and without MDT. Results showed that H. halys adult and nymphal captures were relatively insensitive to the ratio of synthetic pheromone (mixed murgantiols) to MDT, as long as each was present in the trap. Captures of adults and nymphs were responsive to the lure loading of the SSRS isomer, but relatively insensitive to levels of the minor component, RSRS. The relative insensitivity of H. halys to these attractant ratios gives flexibility to development of more cost-efficient synthesis and trapping as well as other semiochemical-based management tactics.


Subject(s)
Hemiptera , Heteroptera , Animals , Insect Control , Male , Maryland , Pheromones , West Virginia
7.
J Chem Ecol ; 45(2): 198, 2019 02.
Article in English | MEDLINE | ID: mdl-30710237

ABSTRACT

The original version of this article unfortunately contained a mistake. Under the heading "Insects" in "Methods and Materials" the sentence "A colony of N. viridula originated with field collections near Tifton, Georgia, USA" is incorrect.

8.
J Chem Ecol ; 45(2): 187-197, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30267360

ABSTRACT

Insects use a wide range of structurally diverse pheromones for intra-specific communication. Compounds in the class of terpenes are emitted as sex, aggregation, alarm, or trail pheromones. Despite the common occurrence of terpene pheromones in different insect lineages, their origin from dietary host plant precursors or de novo biosynthetic pathways often remains unknown. Several stink bugs (Hemiptera: Pentatomidae) release bisabolene-type sesquiterpenes for aggregation and mating. Here we provide evidence for de novo biosynthesis of the sex pheromone trans-/cis-(Z)-α-bisabolene epoxide of the Southern green stink bug, Nezara viridula. We show that an enzyme (NvTPS) related to isoprenyl diphosphate synthases (IDSs) of the core terpene metabolic pathway functions as a terpene synthase (TPS), which converts the general intermediate (E,E)-farnesyl diphosphate (FPP) to the putative pheromone precursor (+)-(S,Z)-α-bisabolene in vitro and in protein lysates. A second identified IDS-type protein (NvFPPS) makes the TPS substrate (E,E)-FPP and functions as a bona fide FPP synthase. NvTPS is highly expressed in male epidermal tissue associated with the cuticle of ventral sternites, which is in agreement with the male specific release of the pheromone from glandular cells in this tissue. Our study supports findings of the function of similar TPS enzymes in the biosynthesis of aggregation pheromones from the pine engraver beetle Ips pini, the striped flea beetle Phyllotreta striolata, and the harlequin bug Murgantia histrionica, and hence provides growing evidence for the evolution of terpene de novo biosynthesis by IDS-type TPS families in insects.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Heteroptera/enzymology , Insect Proteins/metabolism , Sex Attractants/metabolism , Alkyl and Aryl Transferases/genetics , Animals , Female , Gas Chromatography-Mass Spectrometry , Insect Proteins/genetics , Male , RNA/isolation & purification , RNA/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sex Attractants/chemistry , Stereoisomerism
9.
Pest Manag Sci ; 75(1): 104-114, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30062751

ABSTRACT

BACKGROUND: Introduction of Halyomorpha halys (Stål) in the USA has disrupted many established integrated pest management programs for specialty crops, especially apple. While current management heavily relies on insecticides, one potential alternative tactic is attract-and-kill (AK), whereby large numbers of H. halys are attracted to and retained in a circumscribed area using attractive semiochemicals and removed from the foraging population with an insecticide. The goal of this study was to evaluate if AK implementation in commercial apple orchards can result in levels of H. halys damage that are equal to or less than those from grower standard management programs. RESULTS: Over 2 years at farms in five Mid-Atlantic USA states, we found that the use of AK resulted in 2-7 times less damage compared with grower standard plots, depending on year and period. At selected trees on which AK was implemented, over 10,000 H. halys individuals were killed in two growing seasons, and the use of AK reduced the crop area treated with insecticide against H. halys by 97%. Using AK had no impact on the natural enemy or secondary pest community over the same period. CONCLUSIONS: Overall, the use of AK was effective at managing low to moderate H. halys populations in apple orchards, but must be optimized to increase economic feasibility for grower adoption. © 2018 Society of Chemical Industry.


Subject(s)
Heteroptera , Insect Control/methods , Insecticides , Pheromones , Animals , Heteroptera/growth & development , Malus/growth & development , Mid-Atlantic Region , Nymph/growth & development , Southeastern United States
10.
Proc Natl Acad Sci U S A ; 115(37): E8634-E8641, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30139915

ABSTRACT

Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Heteroptera/metabolism , Insect Proteins/metabolism , Pheromones/metabolism , Sesquiterpenes/metabolism , Alkyl and Aryl Transferases/classification , Alkyl and Aryl Transferases/genetics , Animals , Biosynthetic Pathways/genetics , Heteroptera/enzymology , Heteroptera/genetics , Insect Proteins/chemistry , Insect Proteins/genetics , Male , Models, Molecular , Molecular Structure , Pheromones/chemistry , Phylogeny , Polyisoprenyl Phosphates/metabolism , Protein Domains , Sesquiterpenes/chemistry , Stereoisomerism
11.
PLoS One ; 13(1): e0191223, 2018.
Article in English | MEDLINE | ID: mdl-29342183

ABSTRACT

The brown marmorated stink bug, Halyomorpha halys, is an agricultural and urban pest that has become widely established as an invasive species of major concern in the USA and across Europe. This species forms large aggregations when entering diapause, and it is often these aggregations that are found by officials conducting inspections of internationally shipped freight. Identifying the presence of diapausing aggregations of H. halys using their emissions of volatile organic compounds (VOCs) may be a potential means for detecting and intercepting them during international freight inspections. Headspace samples were collected from aggregations of diapausing H. halys using volatile collection traps (VCTs) and solid phase microextraction. The only compound detected in all samples was tridecane, with small amounts of (E)-2-decenal found in most samples. We also monitored the release of defensive odors, following mechanical agitation of diapausing and diapause-disrupted adult H. halys. Diapausing groups were significantly more likely to release defensive odors than diapause-disrupted groups. The predominant compounds consistently found from both groups were tridecane, (E)-2-decenal, and 4-oxo-(E)-2-hexenal, with a small abundance of dodecane. Our findings show that diapausing H. halys do release defensive compounds, and suggest that volatile sampling may be feasible to detect H. halys in freight.


Subject(s)
Heteroptera/chemistry , Odorants/analysis , Volatile Organic Compounds/chemistry , Aldehydes/analysis , Alkanes/analysis , Alkenes/analysis , Animals , Diapause , Gas Chromatography-Mass Spectrometry , Heteroptera/growth & development , Heteroptera/physiology
12.
J Econ Entomol ; 111(1): 495-499, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29272430

ABSTRACT

The invasive stink bug species, Halyomorpha halys (Stål) (Hemiptera; Pentatomidae), severely damages multiple agricultural commodities, resulting in the disruption of established IPM programs. Several semiochemicals have been identified to attract H. halys to traps and monitor their presence, abundance, and seasonal activity. In particular, the two-component aggregation pheromone of H. halys, (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol (PHER), in combination with the pheromone synergist, methyl (2E,4E,6Z)-decatrienoate (MDT), were found to be attractive. Here, we report that an analogous trienoate, ethyl (2E,4E,6Z)-decatrienoate (EDT), enhances H. halys captures when combined with PHER. In trials conducted in Eastern and Western regions of the United States, we observed that when traps were baited with the H. halys PHER + EDT, captures were significantly greater than when traps were baited with PHER alone. Traps baited with EDT alone were not attractive. Thus, the addition of EDT to lures for attracting H. halys to traps may further improve monitoring efficiency and management strategies for this invasive species.


Subject(s)
Chemotaxis , Heteroptera/physiology , Insect Control/methods , Pheromones/pharmacology , Animals , Heteroptera/drug effects , Heteroptera/growth & development , Nymph/drug effects , Nymph/physiology
13.
J Nat Prod ; 78(12): 3071-4, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26606508

ABSTRACT

Two stereoisomeric zingiberenols in ginger were identified as (3R,6R,7S)-1,10-bisaboladien-3-ol (2) and (3S,6R,7S)-1,10-bisaboladien-3-ol (5). Absolute configurations were assigned by utilizing 1,10-bisaboladien-3-ol stereoisomers and two gas-chromatography columns: a 25 m Hydrodex-ß-6TBDM and 60 m DB-5MS. The C-6 and C-7 absolute configurations in both zingiberenols match those of zingiberene present abundantly in ginger rhizomes. Interestingly, zingiberenol 2 has recently been identified as a male-produced sex pheromone of the rice stink bug, Oebalus poecilus, thus indicating that ginger plants may be a potential source of the sex pheromone of this bug.


Subject(s)
Pheromones/isolation & purification , Rhizome/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Zingiber officinale/chemistry , Animals , Gas Chromatography-Mass Spectrometry , Heteroptera/drug effects , Heteroptera/metabolism , Male , Molecular Structure , Monocyclic Sesquiterpenes , Oils, Volatile , Pheromones/chemistry , Pheromones/pharmacology , Stereoisomerism
14.
Environ Entomol ; 44(3): 746-56, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26313981

ABSTRACT

A recent identification of the two-component aggregation pheromone of the invasive stink bug species, Halyomorpha halys (Stål), in association with a synergist, has greatly improved the ability to accurately monitor the seasonal abundance and distribution of this destructive pest. We evaluated the attraction of H. halys to black pyramid traps baited with lures containing the pheromone alone, the synergist methyl (2E,4E,6Z)-decatrienoate (MDT) alone, and the two lures in combination. Traps were deployed around areas of agricultural production including fruit orchards, vegetables, ornamentals, or row crops in Delaware, Maryland, North Carolina, New Jersey, New York, Ohio, Oregon, Pennsylvania, Virginia, and West Virginia from mid-April to mid-October, 2012 and 2013. We confirmed that H. halys adults and nymphs are attracted to the aggregation pheromone season long, but that attraction is significantly increased with the addition of the synergist MDT. H. halys adults were detected in April with peak captures of overwintering adults in mid- to late May. The largest adult captures were late in the summer, typically in early September. Nymphal captures began in late May and continued season long. Total captures declined rapidly in autumn and ceased by mid-October. Captures were greatest at locations in the Eastern Inland region, followed by those in the Eastern Coastal Plain and Pacific Northwest. Importantly, regardless of location in the United States, all mobile life stages of H. halys consistently responded to the combination of H. halys aggregation pheromone and the synergist throughout the entire season, suggesting that these stimuli will be useful tools to monitor for H. halys in managed systems.


Subject(s)
Diterpenes/pharmacology , Heteroptera/drug effects , Insect Control/methods , Pheromones/pharmacology , Animals , Chemotaxis , Climate , Heteroptera/growth & development , Heteroptera/physiology , Nymph/drug effects , Nymph/physiology , Population Density , United States
15.
J Chem Ecol ; 41(4): 418-29, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25855524

ABSTRACT

The brown marmorated stink bug, Halyomorpha halys, is an invasive insect in the United States that is capable of inflicting significant yield losses for fruit, vegetable, and soybean growers. Recently, a male-produced aggregation pheromone of H. halys was identified as a 3.5:1 mixture of (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol, two stereoisomers of a natural sesquiterpene with a bisabolane skeleton, potentially existing in 16 stereoisomeric forms. In this study, we assessed attraction to pheromonal and non-pheromonal stereoisomeric mixtures of 10,11-epoxy-1-bisabolen-3-ol, which are easier to synthesize than single isomers, and evaluated dose-dependent responses to attractive mixtures in field trials. Some treatments not containing the natural pheromone components were moderately active in field-trapping studies, signifying that some stereoisomers of 10,11-epoxy-1-bisabolen-3-ol are sufficiently similar to the true pheromone in structure to trigger behavioral responses. Importantly, we found that mixtures of stereoisomers containing pheromone components were also highly attractive to H. halys, even in the presence of multiple "unnatural" stereoisomers. Further, adult and nymphal captures were dose-dependent, regardless of whether the lure contained pheromonal or non-pheromonal components. Our findings of attraction to pheromonal and non-pheromonal stereoisomers and lack of inhibition from non-pheromonal stereoisomers of 10,11-epoxy-1-bisabolen-3-ol increase the flexibility of developing pheromone-based products for H. halys.


Subject(s)
Heteroptera , Insect Control , Pheromones , Sesquiterpenes , Animals , Heteroptera/growth & development , Male , Nymph , Stereoisomerism
16.
J Chem Ecol ; 40(11-12): 1251-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25380993

ABSTRACT

A two-component pheromone, (3S,6S,7R,10S)- and (3S,6S,7R,10R)-10,11-epoxy-1-bisabolen-3-ol (murgantiol), present in emissions from adult male harlequin bugs, Murgantia histrionica, is most attractive in field bioassays to adults and nymphs in the naturally occurring ratio of ca. 1.4:1. Each of the two individual synthetic stereoisomers is highly attractive to male and female adults and nymphs, but is more attractive in combination and when deployed with a harlequin bug host plant. Blends of 8 stereoisomers also are highly attractive, suggesting that isomers not found in the natural pheromone are not repellent. Deployment of an inexpensive non-stereospecific synthetic pheromone holds promise for efficient trapping and/or use in trap-crops for this important pest in North America.


Subject(s)
Chemotaxis , Heteroptera/physiology , Pheromones/metabolism , Animals , Female , Heteroptera/growth & development , Male , Nymph/physiology , Stereoisomerism
17.
J Chem Ecol ; 40(11-12): 1260-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25408429

ABSTRACT

Preparation of a complete stereoisomeric library of 1,10-bisaboladien-3-ols and selected 10,11-epoxy-1-bisabolen-3-ols was pivotal for the identification of the aggregation pheromone of the brown marmorated stink bug, Halyomorpha halys. Herein, we describe syntheses of the remaining 10,11-epoxy-1-bisabolen-3-ols, and provide additional evidence on the assignment of relative and absolute configurations of these compounds by single-crystal X-ray crystallography of an intermediate, (3S,6R,7R,10S)-1-bisabolen-3,10,11-triol. To demonstrate the utility of this stereoisomeric library, we revisited the aggregation pheromone of the harlequin bug, Murgantia histrionica, and showed that the male-produced pheromone consists of two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol. Employment of eight cis-10,11-epoxy-1-bisabolen-3-ol stereoisomeric standards, two enantioselective GC columns, and NMR spectroscopy enabled the identification of these compounds as (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3S,6S,7R,10R)-10,11-epoxy-1-bisabolen-3-ol, which are produced by M. histrionica males in 1.4:1 ratio.


Subject(s)
Chemotaxis , Heteroptera/physiology , Pheromones/metabolism , Animals , Chromatography, Gas , Crystallography, X-Ray , Heteroptera/growth & development , Male , Stereoisomerism
18.
J Econ Entomol ; 107(3): 1061-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25026665

ABSTRACT

The reported male-produced aggregation pheromone of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), identified as a mixture of (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3R, 6S, 7R, 10S)-10,11-epoxy-1-bisabolen-3-ol, offers new opportunities for its management. We found that black pyramid traps deployed along crop borders in Maryland and West Virginia, containing lures with both stereoisomers of this reported aggregation pheromone combined with methyl (E,E,Z)-2,4,6-decatrienoate (MDT) lures, attracted more adult and nymphal H. halys than either the aggregation pheromone or MDT alone. In season-long totals, combined lures acted synergistically by catching 1.9-3.2 times more number of adults, and 1.4-2.5 times more number of nymphs, than expected from an additive effect of the lures deployed individually. There were no significant differences in patterns of male and female captures. MDT alone was not significantly attractive to adults during most of the growing season, but became increasingly attractive to adults and especially nymphs in autumn. Mixed-isomer lures containing eight stereoisomers of 10,11-epoxy-1-bisabolen-3-ol, including the two active stereoisomers, were as effective at catching adults and nymphs with or without MDT as were lures loaded only with the two active stereoisomers in the natural ratio ((3S, 6S, 7R, 10S)-10,11-epoxy-1-bisabolen-3-ol: (3R, 6S, 7R, 10S)-10,11-epoxy-1-bisabolen-3-ol) of 3.5:1. These results identify a combination of semiochemicals that is attractive season-long for detection, monitoring, and potential control of this polyphagous invasive pest of North America and Europe.


Subject(s)
Diterpenes/pharmacology , Heteroptera/drug effects , Insect Control/methods , Pheromones/pharmacology , Animals , Drug Synergism , Female , Heteroptera/growth & development , Male , Maryland , Nymph/drug effects , Nymph/growth & development , Seasons , Stereoisomerism , West Virginia
19.
J Nat Prod ; 77(7): 1708-17, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24963992

ABSTRACT

We describe a novel and straightforward route to all stereoisomers of 1,10-bisaboladien-3-ol and 10,11-epoxy-1-bisabolen-3-ol via the rhodium-catalyzed asymmetric addition of trimethylaluminum to diastereomeric mixtures of cyclohex-2-enones 1 and 2. The detailed stereoisomeric structures of many natural sesquiterpenes with the bisabolane skeleton were previously unknown because of the absence of stereoselective syntheses of individual stereoisomers. Several of the bisabolenols are pheromones of economically important pentatomid bug species. Single-crystal X-ray crystallography of underivatized triol 13 provided unequivocal proof of the relative and absolute configurations. Two of the epoxides, (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol (3) and (3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol (4), were identified as the main components of a male-produced aggregation pheromone of the brown marmorated stink bug, Halyomorpha halys, using GC analyses on enantioselective columns. Both compounds attracted female, male, and nymphal H. halys in field trials. Moreover, mixtures of stereoisomers containing epoxides 3 and 4 were also attractive to H. halys, signifying that the presence of additional stereoisomers did not hinder attraction of H. halys and relatively inexpensive mixtures can be used in monitoring, as well as control strategies. H. halys is a polyphagous invasive species in the U.S. and Europe that causes severe injury to fruit, vegetables, and field crops and is also a serious nuisance pest.


Subject(s)
Heteroptera/chemistry , Pheromones/isolation & purification , Sesquiterpenes/isolation & purification , Animals , Crystallography, X-Ray , Female , Introduced Species , Male , Molecular Conformation , Molecular Structure , Pheromones/chemistry , Pheromones/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Stereoisomerism
20.
Environ Entomol ; 41(3): 648-56, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22732623

ABSTRACT

Attraction of emerald ash borer, Agrilus planipennis Fairmaire, to a volatile pheromone was demonstrated in three field experiments using baited green sticky traps. A dose-response curve was generated for male A. planipennis to increasing release rates of (3Z)-dodecen-12-olide ((3Z)-lactone) in combination with the green leaf volatile, (3Z)-hexenol. Only the lowest release rate (<2.50 µg/d) of (3Z)-lactone significantly increased captures of male A. planipennis, as compared with traps baited with (3Z)-hexenol alone. Effect of trap height, (3Z)-lactone, and (3Z)-hexenol and their interactions on the trap capture of A. planipennis was determined in a factorial experiment. Number of males per trap was significantly and positively affected by (3Z)-lactone, (3Z)-hexenol, and trap height whereas number of females per trap was affected by trap height only; none of the interactions were significant. As predicted, the greatest mean catch of males was in traps baited with (3Z)-lactone and (3Z)-hexenol placed high in the canopy. Electroantennogram tests on the bark volatile, 7-epi-sesquithujene, demonstrated the ability of male and female A. planipennis antennae to detect and respond to this compound, particularly the (+)-7-epi-sesquithujene isomer. Results from an olfactometer bioassay and field testing did not demonstrate attraction of either males or females to (+)-7-epi-sesquithujene. These data increase our understanding of the pheromone ecology of the invasive emerald ash borer, provide further confirmation of the behavioral activity of the female-produced lactone pheromone, and should increase the ability to detect A. planipennis infestations where they are present.


Subject(s)
Coleoptera/drug effects , Insect Control/methods , Volatile Organic Compounds/pharmacology , Animals , Female , Fraxinus/chemistry , Hexanols/pharmacology , Insect Control/instrumentation , Lactones/pharmacology , Male , Monocyclic Sesquiterpenes , Oils, Volatile/pharmacology , Ontario , Sesquiterpenes/pharmacology , Sex Distribution , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...