Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Phys Rev Lett ; 119(16): 162501, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099223

ABSTRACT

The charge and magnetic form factors, F_{C} and F_{M}, respectively, of ^{3}He are extracted in the kinematic range 25 fm^{-2}≤Q^{2}≤61 fm^{-2} from elastic electron scattering by detecting ^{3}He recoil nuclei and scattered electrons in coincidence with the two High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements find evidence for the existence of a second diffraction minimum for the magnetic form factor at Q^{2}=49.3 fm^{-2} and for the charge form factor at Q^{2}=62.0 fm^{-2}. Both minima are predicted to exist in the Q^{2} range accessible by this Jefferson Lab experiment. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.

3.
Phys Rev Lett ; 112(13): 132503, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24745410

ABSTRACT

The charge form factor of 4He has been extracted in the range 29 fm(-2) ≤ Q2 ≤ 77 fm(-2) from elastic electron scattering, detecting 4He recoil nuclei and electrons in coincidence with the high resolution spectrometers of the Hall A Facility of Jefferson Lab. The measurements have uncovered a second diffraction minimum for the form factor, which was predicted in the Q2 range of this experiment. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the few-body problem.

4.
Phys Rev Lett ; 106(5): 052501, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405386

ABSTRACT

We measured with unprecedented precision the induced polarization P(y) in (4)He(e,e'p)(3)H at Q(2)=0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

5.
Phys Rev Lett ; 105(7): 072001, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20868031

ABSTRACT

Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H reaction at Q{2}=0.8 and 1.3 (GeV/c){2} with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e'p) reaction, contradicting a relativistic distorted-wave approximation and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.

6.
Phys Rev Lett ; 99(20): 202002, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233135

ABSTRACT

High-precision measurements of the proton elastic form-factor ratio, mu pG p E/G p M, have been made at four-momentum transfer, Q2, values between 0.2 and 0.5 GeV2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q2 range the deviation from unity is primarily due to G p E being smaller than expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...