Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 25(6): 140, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890191

ABSTRACT

Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.


Subject(s)
Antineoplastic Agents , Drug Carriers , Nanoparticles , Neoplasms , Humans , Neoplasms/drug therapy , Drug Carriers/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Animals , Drug Delivery Systems/methods , Nanomedicine/methods , Liposomes , Micelles , Tissue Distribution
2.
Cell Signal ; 112: 110881, 2023 12.
Article in English | MEDLINE | ID: mdl-37666286

ABSTRACT

The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-ß, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Urinary Bladder Neoplasms/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...