Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 103(12): 123006, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19792433

ABSTRACT

We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.

2.
Phys Rev Lett ; 97(24): 243003, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17280277

ABSTRACT

We recently demonstrated that strings of trapped atoms inside a standing wave optical dipole trap can be rearranged using optical tweezers [Y. Miroshnychenko, Nature 442, 151 (2006)]. This technique allows us to actively set the interatomic separations on the scale of the individual trapping potential wells. Here, we use such a distance-control operation to insert two atoms into the same potential well. The detected success rate of this manipulation is 16(-3)(+4)%, in agreement with the predictions of a theoretical model based on our experimental parameters.

3.
Phys Rev Lett ; 95(3): 033002, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16090739

ABSTRACT

We optically detect the positions of single neutral cesium atoms stored in a standing wave dipole trap with a subwavelength resolution of 143 nm rms. The distance between two simultaneously trapped atoms is measured with an even higher precision of 36 nm rms. We resolve the discreteness of the interatomic distances due to the 532 nm spatial period of the standing wave potential and infer the exact number of trapping potential wells separating the atoms. Finally, combining an initial position detection with a controlled transport, we place single atoms at a predetermined position along the trap axis to within 300 nm rms.

4.
Phys Rev Lett ; 93(15): 150501, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15524857

ABSTRACT

We demonstrate the realization of a quantum register using a string of single neutral atoms which are trapped in an optical dipole trap. The atoms are selectively and coherently manipulated in a magnetic field gradient using microwave radiation. Our addressing scheme operates with a high spatial resolution, and qubit rotations on individual atoms are performed with 99% contrast. In a final readout operation we analyze each individual atomic state. Finally, we have measured the coherence time and identified the predominant dephasing mechanism for our register.

5.
Phys Rev Lett ; 91(21): 213002, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14683295

ABSTRACT

We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

6.
Opt Express ; 11(25): 3498-502, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-19471484

ABSTRACT

We have continuously imaged the controlled motion of a single atom as well as of a small number of distinguishable atoms with observation times exceeding one minute. The Cesium atoms are confined to potential wells of a standing wave optical dipole trap which allows to transport them over macroscopic distances. The atoms are imaged by an intensified CCD camera, and spatial resolution near the diffraction limit is obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...