Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Nat Biotechnol ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349522

ABSTRACT

Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.

2.
Nature ; 603(7902): 616-623, 2022 03.
Article in English | MEDLINE | ID: mdl-35296860

ABSTRACT

Fabrics, by virtue of their composition and structure, have traditionally been used as acoustic absorbers1,2. Here, inspired by the auditory system3, we introduce a fabric that operates as a sensitive audible microphone while retaining the traditional qualities of fabrics, such as machine washability and draping. The fabric medium is composed of high-Young's modulus textile yarns in the weft of a cotton warp, converting tenuous 10-7-atmosphere pressure waves at audible frequencies into lower-order mechanical vibration modes. Woven into the fabric is a thermally drawn composite piezoelectric fibre that conforms to the fabric and converts the mechanical vibrations into electrical signals. Key to the fibre sensitivity is an elastomeric cladding that concentrates the mechanical stress in a piezocomposite layer with a high piezoelectric charge coefficient of approximately 46 picocoulombs per newton, a result of the thermal drawing process. Concurrent measurements of electric output and spatial vibration patterns in response to audible acoustic excitation reveal that fabric vibrational modes with nanometre amplitude displacement are the source of the electrical output of the fibre. With the fibre subsuming less than 0.1% of the fabric by volume, a single fibre draw enables tens of square metres of fabric microphone. Three different applications exemplify the usefulness of this study: a woven shirt with dual acoustic fibres measures the precise direction of an acoustic impulse, bidirectional communications are established between two fabrics working as sound emitters and receivers, and a shirt auscultates cardiac sound signals.


Subject(s)
Textiles , Vibration , Wearable Electronic Devices , Acoustics , Dietary Fiber , Heart Auscultation
3.
Adv Funct Mater ; 31(43)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34924913

ABSTRACT

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.

4.
Nat Commun ; 12(1): 3317, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083521

ABSTRACT

Digital devices are the essential building blocks of any modern electronic system. Fibres containing digital devices could enable fabrics with digital system capabilities for applications in physiological monitoring, human-computer interfaces, and on-body machine-learning. Here, a scalable preform-to-fibre approach is used to produce tens of metres of flexible fibre containing hundreds of interspersed, digital temperature sensors and memory devices with a memory density of ~7.6 × 105 bits per metre. The entire ensemble of devices are individually addressable and independently operated through a single connection at the fibre edge, overcoming the perennial single-fibre single-device limitation and increasing system reliability. The digital fibre, when incorporated within a shirt, collects and stores body temperature data over multiple days, and enables real-time inference of wearer activity with an accuracy of 96% through a trained neural network with 1650 neuronal connections stored within the fibre. The ability to realise digital devices within a fibre strand which can not only measure and store physiological parameters, but also harbour the neural networks required to infer sensory data, presents intriguing opportunities for worn fabrics that sense, memorise, learn, and infer situational context.


Subject(s)
Machine Learning , Textiles , Wearable Electronic Devices , Body Temperature , Digital Technology/instrumentation , Electronics/instrumentation , Humans , Memory , Monitoring, Physiologic/instrumentation , Neural Networks, Computer , Remote Sensing Technology/instrumentation , User-Computer Interface
5.
Adv Mater ; 32(49): e2004971, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33145832

ABSTRACT

Supercapacitor fibers, with short charging times, long cycle lifespans, and high power densities, hold promise for powering flexible fabric-based electronics. To date, however, only short lengths of functioning fiber supercapacitors have been produced. The primary goal of this study is to introduce a supercapacitor fiber that addresses the remaining challenges of scalability, flexibility, cladding impermeability, and performance at length. This is achieved through a top-down fabrication method in which a macroscale preform is thermally drawn into a fully functional energy-storage fiber. The preform consists of five components: thermally reversible porous electrode and electrolyte gels; conductive polymer and copper microwire current collectors; and an encapsulating hermetic cladding. This process produces 100 m of continuous functional supercapacitor fiber, orders of magnitude longer than any previously reported. In addition to flexibility (5 mm radius of curvature), moisture resistance (100 washing cycles), and strength (68 MPa), these fibers have an energy density of 306 µWh cm-2 at 3.0 V and ≈100% capacitance retention over 13 000 cycles at 1.6 V. To demonstrate the utility of this fiber, it is machine-woven and used as filament for 3D printing.

6.
Nat Nanotechnol ; 15(8): 690-697, 2020 08.
Article in English | MEDLINE | ID: mdl-32601446

ABSTRACT

Understanding the function of nitric oxide, a lipophilic messenger in physiological processes across nervous, cardiovascular and immune systems, is currently impeded by the dearth of tools to deliver this gaseous molecule in situ to specific cells. To address this need, we have developed iron sulfide nanoclusters that catalyse nitric oxide generation from benign sodium nitrite in the presence of modest electric fields. Locally generated nitric oxide activates the nitric oxide-sensitive cation channel, transient receptor potential vanilloid family member 1 (TRPV1), and the latency of TRPV1-mediated Ca2+ responses can be controlled by varying the applied voltage. Integrating these electrocatalytic nanoclusters with multimaterial fibres allows nitric oxide-mediated neuronal interrogation in vivo. The in situ generation of nitric oxide in the ventral tegmental area with the electrocatalytic fibres evoked neuronal excitation in the targeted brain region and its excitatory projections. This nitric oxide generation platform may advance mechanistic studies of the role of nitric oxide in the nervous system and other organs.


Subject(s)
Electrochemical Techniques/methods , Electrophysiological Phenomena/physiology , Neurons , Nitric Oxide , Animals , Brain/cytology , Brain/physiology , Calcium/metabolism , HEK293 Cells , Humans , Male , Metal Nanoparticles/chemistry , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Nitric Oxide/analysis , Nitric Oxide/metabolism , TRPV Cation Channels/metabolism
7.
Adv Mater ; 32(1): e1904911, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31657053

ABSTRACT

Fibers are the building blocks of a broad spectrum of products from textiles to composites, and waveguides to wound dressings. While ubiquitous, the capabilities of fibers have not rapidly increased compared to semiconductor chip technology, for example. Recognizing that fibers lack the composition, geometry, and feature sizes for more functions, exploration of the boundaries of fiber functionality began some years ago. The approach focuses on a particular form of fiber production, thermal-drawing from a preform. This process has been used for producing single material fibers, but by combining metals, insulators, and semiconductors all within a single strand of fiber, an entire world of functionality in fibers has emerged. Fibers with optical, electrical, acoustic, or optoelectronic functionalities can be produced at scale from relatively easy-to-assemble macroscopic preforms. Two significant opportunities now present themselves. First, can one expect that fiber functions escalate in a predictable manner, creating the context for a "Moore's Law" analog in fibers? Second, as fabrics occupy an enormous surface around the body, could fabrics offer a valuable service to augment the human body? Toward answering these questions, the materials, performance, and limitations of thermally drawn fibers in different electronic applications are detailed and their potential in new fields is envisioned.


Subject(s)
Semiconductors , Textiles/analysis , Animals , Humans , Metals/chemistry , Nanotubes/chemistry , Optical Fibers , Polymers/chemistry , Regenerative Medicine
8.
Nat Commun ; 10(1): 4010, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488825

ABSTRACT

Simultaneous 3D printing of disparate materials; metals, polymers and semiconductors with device quality interfaces and at high resolution remains challenging. Moreover, the precise placement of discrete and continuous domains to enable both device performance and electrical connectivity poses barriers to current high-speed 3D-printing approaches. Here, we report filaments with disparate materials arranged in elaborate microstructures, combined with an external adhesion promoter, to enable a wide range of topological outcomes and device-quality interfaces in 3D printed media. Filaments, structured towards light-detection, are printed into fully-connected 3D serpentine and spherical sensors capable of spatially resolving light at micron resolution across its entire centimeter-scale surface. 0-dimensional metallic microspheres generate light-emitting filaments that are printed into hierarchical 3D objects dotted with electroluminescent pixels at high device resolution of 55 µm not restricted by surface tension effects. Structured multimaterial filaments provides a path towards custom three-dimensional functional devices not realizable by existing approaches.

9.
Proc Natl Acad Sci U S A ; 115(46): E10830-E10838, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30373819

ABSTRACT

Traditional fabrication techniques for microfluidic devices utilize a planar chip format that possesses limited control over the geometry of and materials placement around microchannel cross-sections. This imposes restrictions on the design of flow fields and external forces (electric, magnetic, piezoelectric, etc.) that can be imposed onto fluids and particles. Here we report a method of fabricating microfluidic channels with complex cross-sections. A scaled-up version of a microchannel is dimensionally reduced through a thermal drawing process, enabling the fabrication of meters-long microfluidic fibers with nonrectangular cross-sectional shapes, such as crosses, five-pointed stars, and crescents. In addition, by codrawing compatible materials, conductive domains can be integrated at arbitrary locations along channel walls. We validate this technology by studying unexplored regimes in hydrodynamic flow and by designing a high-throughput cell separation device. By enabling these degrees of freedom in microfluidic device design, fiber microfluidics provides a method to create microchannel designs that are inaccessible using planar techniques.


Subject(s)
Microfluidic Analytical Techniques/methods , Microfluidics/instrumentation , Microfluidics/methods , Cell Separation , Equipment Design/methods , Hydrodynamics , Lab-On-A-Chip Devices
10.
Nature ; 560(7717): 214-218, 2018 08.
Article in English | MEDLINE | ID: mdl-30089921

ABSTRACT

Semiconductor diodes are basic building blocks of modern computation, communications and sensing1. As such, incorporating them into textile-grade fibres can increase fabric capabilities and functions2,  to encompass, for example,  fabric-based communications or physiological monitoring. However, processing challenges have so far precluded the realization of semiconducting diodes of high quality in thermally drawn fibres. Here we demonstrate a scalable thermal drawing process of electrically connected diode fibres. We begin by constructing a macroscopic preform that hosts discrete diodes internal to the structure alongside hollow channels through which conducting copper or tungsten wires are fed. As the preform is heated and drawn into a fibre, the conducting wires approach the diodes until they make electrical contact, resulting in hundreds of diodes connected in parallel inside a single fibre. Two types of in-fibre device are realized: light-emitting and photodetecting p-i-n diodes. An inter-device spacing smaller than 20 centimetres is achieved, as well as light collimation and focusing by a lens designed in the fibre cladding. Diode fibres maintain performance throughout ten machine-wash cycles, indicating the relevance of this approach to apparel applications. To demonstrate the utility of this approach, a three-megahertz bi-directional optical communication link is established between two fabrics containing receiver-emitter fibres. Finally, heart-rate measurements with the diodes indicate their potential for implementation in all-fabric physiological-status monitoring systems. Our approach provides a path to realizing ever more sophisticated functions in fibres, presenting  the prospect of a fibre 'Moore's law' analogue  through the increase of device density and function in thermally drawn textile-ready fibres.

11.
Nat Commun ; 8(1): 1435, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127280

ABSTRACT

Microelectromechanical systems (MEMS) enable many modern-day technologies, including actuators, motion sensors, drug delivery systems, projection displays, etc. Currently, MEMS fabrication techniques are primarily based on silicon micromachining processes, resulting in rigid and low aspect ratio structures. In this study, we report on the discovery of MEMS functionality in fibres, thereby opening a path towards flexible, high-aspect ratio, and textile MEMS. The method used for generating these MEMS fibres leverages a preform-to-fibre thermal drawing process, in which the MEMS architecture and materials are embedded into a preform and drawn into kilometers of microstructured multimaterial fibre devices. The fibre MEMS functionality is enabled by an electrostrictive P(VDF-TrFE-CFE) ferrorelaxor terpolymer layer running the entire length of the fibre. Several modes of operation are investigated, including thickness-mode actuation with over 8% strain at 25 MV m-1, bending-mode actuation due to asymmetric positioning of the electrostrictive layer, and resonant fibre vibration modes tunable under AC-driving conditions.

12.
Adv Mater ; 29(22)2017 Jun.
Article in English | MEDLINE | ID: mdl-28306168

ABSTRACT

The worldwide annual production volume of textiles is nearly one hundred million metric tons. Most of these undergo treatments to achieve specific properties, such as color, hydrophobicity, antimicrobial, or UV protection, using chemicals that lead to collateral environmental consequences. There is great interest in developing alternative and sustainable strategies to achieve textile functionality that do not involve chemical treatment. Here we present a thermal drawing approach to achieve fiber surface gratings on a rectangular cross-section. We demonstrate directional wetting properties as well as structural coloration based on the gratings. Periods down to ≈ 600 nm were established on the surface of a fiber. Fabrics displaying higher-order diffraction peaks in the visible regime were produced from surface-patterned fibers using convetional weaving machinery.

13.
Appl Opt ; 54(26): 8018-23, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26368979

ABSTRACT

Nanotechnology presents versatile architectural designs for the purpose of utilization as a building block of 1D optoelectronic nanodevices because current nanowire-based schemes require more effective solutions for low absorption capacity of nanoscale volumes. We report on the potential of nanospring absorbers as an alternative light-harvesting platform with significant advantages over conventional nanowires. Absorption capacity of nanospring geometry is found to be superior to cylindrical nanowire shape. Unlike nanowires, they are able to trap a larger amount of light thanks to characteristic periodic behavior that boosts light collection for the points matched with Mie resonances. Moreover, nanospring shape supplies compactness to a resulting device with area preservation as high as twofold. By considering that a nanospring array with optimal periods yields higher absorption than individual arrangements and core-shell designs, which further promote light collection due to unique antireflection features of shell layer, these nanostructures will pave the way for the development of highly efficient self-powered nanosystems.

14.
Sci Rep ; 4: 7505, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25511865

ABSTRACT

Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.

15.
Nanoscale ; 6(21): 12710-7, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25220106

ABSTRACT

The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10,000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ∼10(11). This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform.

16.
Sci Rep ; 4: 4864, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24796730

ABSTRACT

While nanowires and nanospheres have been utilized in the design of a diverse array of nanoscale devices, recent schemes frequently require nanoscale architectures of higher complexity. However, conventional techniques are largely unsatisfactory for the production of more intricate nanoscale shapes and patterns, and even successful fabrication methods are incompatible with large-scale production efforts. Novel top-down, iterative size reduction (ISR)-mediated approaches have recently been shown to be promising for the production of high-throughput cylindrical and spherical nanostructures, though more complex architectures have yet to be created using this process. Here we report the presence of a hitherto-undescribed transitory region between nanowire and nanosphere transformation, where a diverse array of complex quasi one-dimensional nanostructures is produced by Rayleigh-Plateau instability-mediated deformation during the progress of a combined ISR/thermal instability technique. Temperature-based tailoring of architecturally diverse, indefinitely long, globally parallel, complex nanostructure arrays with high uniformity and low size variation facilitates the development of in-fiber or free-standing nanodevices with significant advantages over on-chip devices.

17.
Sci Rep ; 4: 4718, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24751587

ABSTRACT

Biological systems serve as fundamental sources of inspiration for the development of artificially colored devices, and their investigation provides a great number of photonic design opportunities. While several successful biomimetic designs have been detailed in the literature, conventional fabrication techniques nonetheless remain inferior to their natural counterparts in complexity, ease of production and material economy. Here, we investigate the iridescent neck feathers of Anas platyrhynchos drakes, show that they feature an unusual arrangement of two-dimensional (2D) photonic crystals and further exhibit a superhydrophobic surface, and mimic this multifunctional structure using a nanostructure composite fabricated by a recently developed top-down iterative size reduction method, which avoids the above-mentioned fabrication challenges, provides macroscale control and enhances hydrophobicity through the surface structure. Our 2D solid core photonic crystal fibres strongly resemble drake neck plumage in structure and fully polymeric material composition, and can be produced in wide array of colors by minor alterations during the size reduction process.


Subject(s)
Biomimetics , Birds , Feathers , Nanostructures , Animals , Feathers/chemistry , Feathers/ultrastructure , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Nanostructures/ultrastructure , Polymers/chemistry
18.
Sci Rep ; 4: 4607, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24714206

ABSTRACT

We provide the in-depth characterization of light-polymer nanowire interactions in the context of an effective Mie scattering regime associated with low refractive index materials. Properties of this regime sharply contrast with these of resonant Mie scattering, and involve the formation of strictly forward-scattered and coupling-free optical fields in the vicinity of core-shell polymer nanowires. Scattering from these optical fields is shown to be non-resonant in nature and independent from incident polarization. In order to demonstrate the potential utility of this scattering regime in one-dimensional (1D) polymeric nanostructures, we fabricate polycarbonate (PC) - polyvinylidene difluoride (PVDF) core-shell nanowires using a novel iterative thermal drawing process that yields uniform and indefinitely long core-shell nanostructures. These nanowires are successfully engineered for novel nanophotonics applications, including size-dependent structural coloration, efficient light capture on thin-film solar cells, optical nano-sensors with ultrahigh sensitivity and a mask-free photolithography method suitable for the straightforward production of 1D nanopatterns.

19.
ACS Appl Mater Interfaces ; 5(3): 853-60, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23281919

ABSTRACT

A large-area superhydrophobic and omnidirectional antireflective nanostructured organically modified silica coating has been designed and prepared. The coating mimics the self-cleaning property of superhydrophobic lotus leaves and omnidirectional broad band antireflectivity of moth compound eyes, simultaneously. Water contact and sliding angles of the coating are around 160° and 10°, respectively. Coating improves the transmittance of the glass substrate around 4%, when coated on a single side of a glass, in visible and near-infrared region at normal incidence angles. At oblique incidence angles (up to 60°) improvement in transmission reaches to around 8%. In addition, coatings are mechanically stable against impact of water droplets from considerable heights. We believe that our inexpensive and durable multifunctional coatings are suitable for stepping out of the laboratory to practical outdoor applications.

20.
Nano Lett ; 11(11): 4661-5, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-22007963

ABSTRACT

We demonstrated two complementary size-dependent structural coloring mechanisms, interference and scattering, in indefinitely long core-shell nanowire arrays. The unusual nanostructures are comprised of an amorphous semiconducting core and a polymer shell layer with disparate refractive indices but with similar thermomechanical properties. Core-shell nanowires are mass produced from a macroscopic semiconductor rod by using a new top-to-bottom fabrication approach based on thermal size reduction. Nanostructures with diameters from 30 to 200 nm result in coloration that spans the whole visible spectrum via resonant Mie scattering. Nanoshell coloration based on thin film interference is proposed as a structural coloration mechanism which becomes dominant for nanowires having 700-1200 nm diameter. Controlled color generation in any part of visible and infrared spectral regions can be achieved by the simple scaling down procedure. Spectral color generation in mass-produced uniform core-shell nanowire arrays paves the way for applications such as spectral authentication at nanoscale, light-scattering ingredients in paints and cosmetics, large-area devices, and infrared shielding.


Subject(s)
Color , Lighting/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Refractometry/methods , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL