Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Vet Sci ; 24(3): e40, 2023 May.
Article in English | MEDLINE | ID: mdl-37271508

ABSTRACT

Analysis of the VP1 gene sequence of the foot and mouth disease virus (FMDV) is critical to understanding viral evolution and disease epidemiology. A standard set of primers have been used for the detection and sequence analysis of the VP1 gene of FMDV directly from suspected clinical samples with limited success. The study validated VP1-specific degenerate primer-based reverse transcription polymerase chain reaction (RT-PCR) for the qualitative detection and sequencing of serotype O FMDV lineages circulating in India. The novel degenerate primer-based RT-PCR amplifying the VP1 gene can circumvent the genetic heterogeneity observed in viruses after cell culture adaptation and facilitate precise viral gene sequence analysis from clinical samples.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/genetics , Serogroup , Foot-and-Mouth Disease/epidemiology , Serotyping/veterinary , Genetic Heterogeneity
2.
Vet Res Commun ; 47(4): 1915-1924, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37222940

ABSTRACT

Foot-and-mouth disease (FMD) is endemic in India with a majority of outbreaks caused by FMD virus (FMDV) serotype O. In the present study a panel of eight (2F9, 2G10, 3B9, 3H5, 4C8, 4D6, 4G10 and 5B6) mouse monoclonal antibodies (MAbs) were developed against FMDV serotype O Indian vaccine strain, O/IND/R2/75 via hybridoma systems. The MAbs generated were FMDV/O specific without cross-reactivity against FMDV type A and Asia 1. All the MAbs were identified as IgG1/kappa type. Out of eight, three MAbs (3B9, 3H5 and 4G10) demonstrated virus neutralizing activity. The reactivity of all MAbs increased with heat treated (@560C) serotype O antigen compared to untreated antigen in sandwich ELISA indicating that their binding epitopes are linear. Six MAbs (except 2F9 and 4D6) reacted with recombinant P1 protein of homologous virus in an indirect ELISA among which only MAb 3B9 bound to VP1. MAb profiling of 37 serotype O field viruses isolated between the years 1962 and 2021 demonstrated antigenic similarity between field isolates and reference vaccine strain. MAbs 5B6 and 4C8 consistently reacted with all 37 isolates. In indirect immunofluorescence assay MAb 5B6 bound well with FMDV/O antigen. Finally, a sandwich ELISA was successfully developed using rabbit polyclonal anti-FMDV/O serum and MAb 5B6 for detection of FMDV/O antigen in clinical samples (n = 649). The new assay exhibited 100% and 98.89% diagnostic sensitivity and specificity respectively compared to traditional polyclonal antibody-based sandwich ELISA suggesting that the MAb-based ELISA developed here could be an effective method for detection of FMDV serotype O.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Vaccines , Mice , Animals , Rabbits , Antibodies, Monoclonal , Serogroup , O Antigens , Foot-and-Mouth Disease/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral
3.
Vet Res Commun ; 46(4): 1011-1022, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36190601

ABSTRACT

Foot-and-mouth disease (FMD) is a major disease of livestock in India and causes huge economic losses. The formal FMD control program started in 2003-04 in selected districts and was gradually expanded. The present study provides a descriptive review of the FMD outbreaks, prevalent serotypes, and genetic and antigenic features of the FMD virus (FMDV) that circulated in the country between 2011 and 2020. FMD outbreaks were regularly reported in cloven-hoofed domestic livestock and wildlife, with three serotypes including O, A, and Asia1. During the study period, a total of 2226 FMD outbreaks were documented and serotypes confirmed. FMDV serotype O dominated the outbreak scenario, accounting for about 92% of all outbreaks, followed by Asia1 (5% of all outbreaks) and A (3% of all outbreaks). Two major epidemics of FMD on an unprecedented scale during the years 2013 and 2018 by serotype O were recorded. The spatial distribution of FMD was characterized by a larger number of outbreaks in the southern region of the country. In an annual-scale analysis, 2020 was the year with the lowest outbreaks, and 2013 was the year with the highest. The month-scale analysis showed that outbreaks were reported throughout the year, with the highest numbers between October and March. The emergence of three major lineages (O/ME-SA/Ind2001d, O/ME-SA/Ind2001e, and O/ME-SA/Ind2018) of serotype O was observed during the period. In the cases of serotype A and Asia1, the appearance of at least one novel lineage/genetic group, including A/G-18/non-deletion/2019 and Asia1/Group-IX, was documented. While serotype A showed the advent of antigenic variants, serotypes O and Asia1 did not show any antigenic diversity. It was noticed during the course of an outbreak that animal movement contributes significantly to disease transmission. Except for 2018, when numerous FMD outbreaks were recorded, the number of annual outbreaks reported after 2016 has been lower than in the first half of the decade, probably due to mass vaccination and COVID-19 pandemic-linked movement restrictions. Even during outbreaks, disease symptoms in ruminant populations, including cattle, were found to be less severe. Regular six-monthly immunization certainly has a positive impact on the reduction of disease burden and should be followed without fail and delay, along with intensive disease surveillance.


Subject(s)
COVID-19 , Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Pandemics , COVID-19/veterinary , Foot-and-Mouth Disease Virus/genetics , Disease Outbreaks/veterinary , Serogroup , Ruminants , Phylogeny
4.
Microb Pathog ; 156: 104940, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33962006

ABSTRACT

Cellular receptors play an important role in entry and cell to cell spread of morbillivirus infections. The cells expressing SLAM and Nectin-4 have been used for successful and efficient isolation of canine distemper virus (CDV) in high titre. There are several methods for generation of cells expressing receptor molecules. Here, we have used a comparatively cheaper and easily available method, pcDNA 3.1 (+) for engineering Vero cells to express SLAM gene of goat, sheep and dog origin (Vero/Goat/SLAM (VGS), Vero/Sheep/SLAM (VSS) and Vero/Dog/SLAM (VDS), respectively). The generated cell lines were then compared to test their efficacy to support CDV replication. CDV could be grown in high titre in the cells expressing SLAM and a difference of log two could be recorded in virus titre between VDS and native Vero cells. Also, CDV could be grown in a higher titre in VDS as compared to VGS and VSS. The finding of this study supports the preferential use of SLAM expressing cells over the native Vero cells by CDV. Further, the higher titre of CDV in cells expressing dog-SLAM as compared to the cells expressing SLAM of non-CDV hosts (i.e. goat and sheep) points towards the preferential use of dog SLAM by the CDV and may be a plausible reason for differential susceptibility of small ruminants and Canines to CDV.


Subject(s)
Distemper Virus, Canine , Distemper , Animals , Antigens, CD , Cell Line , Chlorocebus aethiops , Distemper Virus, Canine/genetics , Dogs , Goats , Lymphocyte Activation , Sheep , Signaling Lymphocytic Activation Molecule Family Member 1 , Vero Cells
5.
Transbound Emerg Dis ; 68(6): 3498-3508, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33305514

ABSTRACT

Foot-and-mouth disease (FMD) is endemic in India with a preponderance of outbreaks caused by FMD virus (FMDV) serotype O. Out of the 11 global topotypes of serotype O, only ME-SA topotype has been reported in the country so far. Lineage O/ME-SA/Ind2001 and O/ME-SA/PanAsia are documented as the most dominant ones in terms of the number of outbreaks caused by them. To understand the distribution of topotype/lineages in India and their antigenic behaviour during the year 2014-2018, a total of 286 FMDV serotype O viral isolates were sequence determined at the VP1 region, and 109 isolates were characterized antigenically. All the isolates grouped in the ME-SA topotype, being distributed in lineage O/ME-SA/Ind2001 (within sub-lineages O/ME-SA/Ind2001d and O/ME-SA/Ind2001e), and a new group designated here as O/ME-SA/2018 cluster. The sub-lineage O/ME-SA/Ind2001e reported for the first time in India during the year 2015, replaced sub-lineage O/ME-SA/Ind2001d gradually, which was dominating since 2008. During the years 2014-2018, the sub-lineage O/ME-SA/Ind2001e was found to be the most predominant one whose mean evolutionary rate was observed to be faster than that of the sub-lineage O/ME-SA/Ind2001d. The codon sites 45 and 85 of VP1 were found to be under diversifying selection in a large proportion of trees. The common ancestor predicted for sub-lineages O/ME-SA/Ind2001e and O/ME-SA/2018 dates back to 2012 and 2016, respectively. The sustenance and spread of the new O/ME-SA/2018 cluster need to be assessed by continued surveillance. The Indian vaccine strain O/INDR2/1975 was found to provide adequate antigenic coverage to the emerging and prevalent serotype O lineages. The trait association tests showed frequent virus exchange among different states, which could be an important confounder in the region-specific assessment of effectiveness of FMD control programme.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease Virus/genetics , India/epidemiology , Phylogeny , Serogroup
6.
Arch Virol ; 165(11): 2619-2625, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32770485

ABSTRACT

Foot-and-mouth disease virus (FMDV) serotype Asia1 is prevalent in India and is responsible for a minor proportion of FMD outbreaks. Globally, serotype Asia1 is grouped into nine different groups (GI-IX) based on genetic analysis. In India, only Asia1/G-III and Asia1/G-VIII have been documented so far. Phylogenetic analysis of recent serotype Asia1 isolates from India revealed the emergence of Asia1/G-IX. The Asia1/G-IX lineage shares recent common ancestry with Asia1/G-VIII dating to 2016. The root state posterior probabilities of Asia1/G-VIII are inclusive and there may have been either an incursion of the virus from Bangladesh, where it was first identified, or in situ evolution of the virus within India, which is an intriguing possibility.


Subject(s)
Disease Outbreaks/veterinary , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease/epidemiology , Amino Acid Substitution , Animals , Bangladesh , Bayes Theorem , Capsid Proteins/genetics , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/isolation & purification , India/epidemiology , Phylogeny , Serogroup , Vaccination/veterinary
7.
Can J Microbiol ; 65(11): 783-794, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31238018

ABSTRACT

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52-136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


Subject(s)
Mammals/genetics , Morbillivirus Infections/veterinary , Morbillivirus/physiology , Receptors, Virus/genetics , Amino Acid Sequence , Animals , Cats/genetics , Cattle/genetics , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Dogs/genetics , Goats/genetics , Host Specificity , Mammals/classification , Mammals/virology , Morbillivirus/genetics , Morbillivirus Infections/genetics , Morbillivirus Infections/metabolism , Morbillivirus Infections/virology , Phylogeny , Receptors, Virus/chemistry , Sequence Alignment , Sequence Analysis , Sheep/genetics , Signaling Lymphocytic Activation Molecule Family Member 1/chemistry , Signaling Lymphocytic Activation Molecule Family Member 1/genetics
8.
Trop Anim Health Prod ; 51(8): 2529-2538, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31209691

ABSTRACT

The low potency of genetic immunization has to date impeded development of commercial vaccines against major infectious diseases. The aim of this study was to develop and evaluate a fusion gene-based DNA prime-protein boost vaccination strategy to improve the efficacy of both DNA and subunit vaccines against Newcastle disease virus (NDV). The fusion (F) protein, a viral surface glycoprotein, is responsible for the cell membrane fusion and spread, also is one of the major targets for immune response. In this study, groups of chickens were vaccinated twice intramuscularly at 14-day interval either with plasmid DNA encoding F protein gene of NDV or with recombinant F protein alone or with plasmid DNA and boosted with the recombinant F protein and compared with birds that were vaccinated with live NDV vaccine. The immune response was evaluated by indirect ELISA, lymphocyte transformation test, virus neutralization test, cytokine analysis, immunophenotyping of peripheral blood mononuclear cells, and protective efficacy study against virulent NDV challenge virus infection. Chickens in prime-boost group developed a higher level of humoral and cellular immune responses as compared with those immunized with plasmid or protein alone. The DNA prime-protein boost using F protein of NDV yielded 91.6% protection against virulent NDV challenge infection better than immunization with DNA vaccine (66.6%) or rF protein (83.3%) alone. These findings suggest that the "DNA prime-protein boost" approach using full-length F gene could enhance the immune response against NDV in the chickens.


Subject(s)
Chickens , Immunization, Secondary/veterinary , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , DNA , Leukocytes, Mononuclear , Poultry Diseases/virology , Vaccination , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology
9.
Anim Biotechnol ; 30(1): 57-62, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29527970

ABSTRACT

Foot-and-mouth disease (FMD) is an acute, highly contagious, and economically devastating viral disease of domestic and wildlife species. For effective implementation of FMD control program, there is an imperative need for developing a rapid, sensitive, and specific diagnostics which help in the identification of serotypes involved in the outbreaks. The humoral immune response of the Camelidae is unique since in these animals 75% of circulating antibodies are constituted by heavy-chain antibodies and 25% are conventional immunoglobulin with two identical heavy chains. In the present study, we developed and characterized FMD virus-specific single-domain heavy-chain antibodies (VHHs) against inactivated whole-virus antigens of FMDV serotypes O (INDR2/1975), A (IND40/2000), and Asia 1 (IND63/1972) vaccine strains. After six rounds of panning and enrichment, these VHHs were stably expressed in Escherichia coli cells. The VHHs directed against outer capsid proteins of FMD virus were successfully utilized as the capture antibody in liquid-phase blocking ELISA (LPBE) thus replacing rabbit coating antibodies. Our study demonstrated the utility of FMD virus-specific VHHs as potential candidates in FMD research and diagnostic application.


Subject(s)
Antibodies, Viral/immunology , Antibody Specificity , Camelus/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/diagnosis , Single-Domain Antibodies/immunology , Animals , Capsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Escherichia coli/genetics , Escherichia coli/metabolism , Foot-and-Mouth Disease/virology , Male , Species Specificity
10.
Virus Genes ; 52(2): 235-43, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873406

ABSTRACT

Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 â†’ R or H142 â†’ F or H142 â†’ A substitutions resulted in non-infectious FMDV, H142 â†’ D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.


Subject(s)
Acids/pharmacology , Amino Acid Substitution , Capsid Proteins/genetics , Codon , Foot-and-Mouth Disease Virus/drug effects , Foot-and-Mouth Disease Virus/genetics , Animals , Antigens, Viral/immunology , Capsid Proteins/chemistry , Capsid Proteins/immunology , Cell Line , Endosomes/virology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/classification , Genetic Fitness , Hydrogen-Ion Concentration , Mutation , Protein Stability , Serogroup , Virus Activation/drug effects , Virus Replication
11.
Biotechnol Appl Biochem ; 63(1): 106-12, 2016.
Article in English | MEDLINE | ID: mdl-25311758

ABSTRACT

The infectious bronchitis virus is a causative agent of avian infectious bronchitis (AIB), and is is an important disease that produces severe economic losses to the poultry industry worldwide. Recent AIB outbreaks in India have been associated with poor growth in broilers, drop in egg production, and thin egg shells in layers. The complete spike gene of Indian AIB vaccine strain was amplified and sequenced using a conventional reverse transcription polymerase chain reaction and is submitted to the GenBank (accession no KF188436). Phylogenetic analysis revealed that the vaccine strain currently used belongs to H120 genotype, an attenuated strain of Massachusetts (Mass) serotype. Nucleotide and amino acid sequence comparisons have shown that the reported spike gene from Indian isolates have 71.8%-99% and 71.4%-96.9% genetic similarity with the sequenced H120 strain. The study identifies live attenuated IBV vaccine strain, which is routinely used for vaccination, for the first time. Based on nucleotide and amino acid relatedness studies of the vaccine strain with reported IBV sequences from India, it is shown that the current vaccine strain is efficient in controlling the IBV infection. Continuous monitoring of IBV outbreaks by sequencing for genotyping and in vivo cross protection studies for serotyping is not only important for epidemiological investigation but also for evaluation of efficacy of the current vaccine.


Subject(s)
Coronavirus Infections/veterinary , Glycoproteins/genetics , Infectious bronchitis virus/genetics , Poultry Diseases/virology , Vaccines, Attenuated/genetics , Viral Proteins/genetics , Amino Acid Sequence , Animals , Computational Biology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genotype , Glycoproteins/chemistry , India/epidemiology , Infectious bronchitis virus/chemistry , Molecular Sequence Data , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Protein Sorting Signals , Vaccines, Attenuated/chemistry , Viral Proteins/chemistry , Viral Vaccines/chemistry , Viral Vaccines/genetics
12.
Res Vet Sci ; 102: 7-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26412511

ABSTRACT

Infectious bursal disease (IBD) is an acute immunosuppressive disease of young chicks, caused by a double-stranded RNA virus. VP2 being the major capsid protein of the virus is an ideal vaccine candidate possessing the neutralizing epitopes. The present study involves the use of flagellin (fliC) as a genetic adjuvant to improve the immune response of VP2 based DNA vaccine against IBD. Our findings revealed that birds immunized with plasmid pCIVP2fliC showed robust immune response than pCIVP2 immunized groups. Further, challenge study proved that genetic fusion of fliC and VP2 can provide a comparatively higher level of protection against vvIBDV challenge in chickens than VP2 alone. These results thus indicate that Salmonella flagellin could enhance the immune responses and protection efficacy of a DNA vaccine candidate against IBDV infection in chickens, highlighting the potential of flagellin as a genetic adjuvant in the prevention of vvIBDV infection.


Subject(s)
Birnaviridae Infections/veterinary , Infectious bursal disease virus/immunology , Poultry Diseases/prevention & control , Salmonella typhimurium/metabolism , Viral Vaccines/immunology , Adjuvants, Immunologic , Animals , Antibodies, Viral/immunology , Birnaviridae Infections/prevention & control , Capsid Proteins/immunology , Chickens , Flagellin/immunology , Plasmids , Vaccines, DNA/immunology
13.
Vaccine ; 33(8): 1033-9, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25596458

ABSTRACT

Infectious bursal disease (IBD) is an acute, infectious, immunosuppressive disease affecting young chicken worldwide. The etiological agent IBD virus (IBDV) is a double stranded RNA virus with outer capsid protein VP2 of IBDV is the major antigenic determinant capable of inducing neutralizing antibody. DNA vaccines encoding VP2 has been extensively studied achieving only partial protection. However, the efficacy of DNA vaccines against IBDV can be augmented by choosing a potential molecular adjuvant. The goal of the present study is to evaluate the immune response and protective efficacy of a DNA vaccine encoding the C-terminal domain of the heat shock protein 70 (cHSP70) of Mycobacterium tuberculosis gene genetically fused with the full length VP2 gene of IBDV (pCIVP2-cHSP70) in comparison to a 'DNA prime-protein boost' approach and a DNA vaccine encoding the VP2 gene (pCIVP2) alone. The results indicate that both pCIVP2-cHSP70 and 'DNA prime-protein boost' elicited humoral as well as cellular immune responses. Chickens in the pCIVP2-cHSP70 and 'DNA prime-protein boost' groups developed significantly higher levels of ELISA titer to IBDV antigen compared to the group immunized with pCIVP2 alone (p<0.01). However, significantly higher levels of lymphocyte proliferative response, IL-12 and IFN-γ production were found in the pCIVP2-cHSP70 group compared to 'DNA prime-protein boost' group. Additionally, chickens immunized with pCIVP2-cHSP70 and 'DNA prime-protein boost' vaccines were completely protected against the vvIBDV whereas pCIVP2 DNA vaccine alone was able to protect only 70%. These findings suggest that the truncated C-terminal HSP70 mediated DNA vaccine genetically fused with the VP2 gene construct stimulated both humoral and cell mediated immune responses and conferred complete protection against IBDV. This novel strategy is perhaps a seminal concept in utilizing HSP70 as an adjuvant molecule to elicit an immune response against IBD affecting chickens.


Subject(s)
Bacterial Proteins/immunology , Birnaviridae Infections/veterinary , HSP70 Heat-Shock Proteins/immunology , Poultry Diseases/prevention & control , Recombinant Fusion Proteins/immunology , Vaccines, DNA/immunology , Viral Structural Proteins/immunology , Animals , Bacterial Proteins/genetics , Cell Line , Chickens , Cytokines/metabolism , Gene Expression , HSP70 Heat-Shock Proteins/genetics , Immunity, Humoral/immunology , Lymphocyte Activation/immunology , Poultry Diseases/immunology , Poultry Diseases/metabolism , Recombinant Fusion Proteins/genetics , Vaccines, DNA/genetics , Viral Structural Proteins/genetics
14.
Virus Genes ; 49(3): 449-55, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25260553

ABSTRACT

The continued spread and occurrence of Newcastle disease virus (NDV) has posed potential threat to domestic poultry industry around the globe. Mainly, wild avian species has always been implicated for the natural reservoir for virus and spread of the disease. In the present study, we report the isolation of Newcastle disease virus (NDV/Peacock/India/2012) in necropsy brain tissue sample of wild peacock from North India. Complete genome of the virus was found to be 15,186 nucleotides (nts) with six genes in order of 3'-N-P-M-F-HN-L-5', which was limited by 55-nts leader region at the 3' end and a 114-nts trailer sequence at 5' end. Sequence analysis of fusion protein revealed the dibasic amino acid cleavage site (112)R-R-Q-K-R-F(117), a characteristic motif of virulent virus. Phylogenetic analysis placed the isolate in genotype II of Newcastle disease virus showing the lowest mean percent divergence (6 %) with other genotype II counterparts. The isolate was characterized as mesogenic (intermediate pathotype) based on the mean death time (63 h) in embryonated chicken eggs and the intra-cerebral pathogenicity index (1.40) in day-old chicks. The report emphasizes the dynamic ecology of NDV strains circulating in a wild avian host during the outbreak of 2012 in North India. Further the genotypic and pathotypical characterizations of the isolate could help in development of homologous vaccine against NDV strain circulating in avian population.


Subject(s)
Bird Diseases/virology , Galliformes/virology , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , Animals, Wild/virology , Brain/virology , Chick Embryo , Cluster Analysis , Genome, Viral , Genotype , India , Molecular Sequence Data , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Survival Analysis
15.
J Virol Methods ; 209: 1-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25173423

ABSTRACT

Avian infectious bronchitis is ubiquitous and highly contagious disease of poultry, with profound effect on commercial poultry production. For effective control of infectious bronchitis virus (IBV), quick and specific diagnosis is of utmost importance. In this study, the virus was isolated from clinical samples from India and the full length nucleocapsid (N) gene was amplified, cloned and expressed in a prokaryotic system. The purified recombinant N protein based single serum dilution enzyme linked immunosorbent assay (ELISA) was developed for IBV to measure specific antibody in the sera of chickens. A total of 310 chicken sera samples were tested using the commercial IDEXX kit along with the assay developed. A linear correlation was obtained between predicted antibody titres at a single working dilution of 1:100 and the corresponding serum titres observed as determined by the standard serial dilution method. Regression analysis was used to construct a standard curve from which an equation was derived which confirmed their correlation. The developed equation was then used to extrapolate predicated ELISA antibody titer from corrected absorbance readings of the single working dilution. The assay proved to be specific (95.8%) and sensitive (96.8%) when compared to the commercial IDEXX ELISA test.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Nucleocapsid Proteins , Poultry Diseases/diagnosis , Animals , Chickens , Cloning, Molecular , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/methods , Gene Expression , India , Molecular Sequence Data , Nucleocapsid Proteins/genetics , Poultry Diseases/virology , Recombinant Proteins/genetics , Sensitivity and Specificity , Sequence Analysis, DNA , Serum/immunology
16.
Genome Announc ; 2(3)2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24903868

ABSTRACT

We report here the complete genome sequence of a Newcastle disease virus (NDV) isolated from a wild peacock. Phylogenetic analysis showed that it belongs to genotype II, class II of NDV strains. This study helps to understand the ecology of NDV strains circulating in a wild avian host of this geographical region during the outbreak of 2012 in northwest India.

SELECTION OF CITATIONS
SEARCH DETAIL
...