Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 225: 119145, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36179429

ABSTRACT

In this work, we demonstrate the development, evaluation and pre-liminary application of a novel passive sampler for monitoring of selected pharmaceuticals in environmental waters. The samplers were calibrated in laboratory-based experiments to obtain sampling rates (Rs) for carbamazepine, methocarbamol, etilefrine, venlafaxine and nevirapine. Passive sampling was based on the diffusion of the target pharmaceuticals from surface water through a membrane bag which housed an ionic liquid as a green receiving solvent and a molecularly imprinted polymer. Effects of biofouling, deployment time and solvent type for the receiver phase were optimized for selective uptake of analytes in surface water. Notably, there was a decrease in the uptake of selected pharmaceuticals and consequently a decrease in their sampling rates in the presence of biofouling. The optimum matrix-matched sampling rates ranged from 0.0007 - 0.0018 L d-1 whilst the method detection and quantification limits ranged from 2.45 - 3.26 ng L-1 and 8.06 - 10.81 ng L-1, respectively. The optimized passive sampler was deployed in a dam situated in the heart of a typical highly populated township in the Gauteng Province of South Africa. Only etilefrine and methocarbamol were detected and quantified at maximum time weighted average concentrations of 12.88 and 72.29 ng L-1, respectively.


Subject(s)
Etilefrine , Ionic Liquids , Methocarbamol , Water Pollutants, Chemical , Water , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Molecularly Imprinted Polymers , Venlafaxine Hydrochloride , Nevirapine , South Africa , Carbamazepine , Pharmaceutical Preparations
2.
Chemosphere ; 286(Pt 3): 131973, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34426269

ABSTRACT

This work demonstrates development and evaluation of a two-way technique based on the combination of membrane assisted solvent extraction and a molecularly imprinted polymer (MASE-MIP) for selective and efficient extraction of five selected pharmaceuticals belonging to five different therapeutic classes. The pharmaceuticals were extracted from surface water samples followed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qTOF/MS) determination. A central composite design was applied to optimize the influence of the sample salt content, the stirring rate, the stirring time and the amount of MIP on the extraction of an anticonvulsant (carbamazepine), a cardiac stimulant (etilefrine), a muscle relaxant (methocarbamol), an antiretroviral (nevirapine) and an antidepressant (venlafaxine) from surface water. Optimization of the analytical method was performed by spiking water with a mixture of all five pharmaceuticals at 500 ng mL-1. Optimum extraction conditions for a sample volume of 18 mL were found to be 5 g of salt content, a stirring rate of 400 rpm, an extraction time of 60 min and 50 mg of MIP. The MASE-MIP-LC-qTOF/MS method gave detection and quantification limits ranging from 0.09 to 0.20 ng mL-1 and 0.31-0.69 ng mL-1, respectively. The spiked river water samples yielded recoveries ranging from 38 to 91% for the selected model compounds belonging to the five classes of pharmaceuticals. Upon the application of the developed analytical method in water analysis, all selected pharmaceuticals were detected in South African river water with nevirapine and venlafaxine being more prominent attaining the maximum concentrations of 1.64 and 2.48 ng mL-1, respectively.


Subject(s)
Molecular Imprinting , Pharmaceutical Preparations , Water Pollutants, Chemical , Molecularly Imprinted Polymers , Polymers , Solvents , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...