Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 72(3): 510-4, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19343938

ABSTRACT

A study was conducted to determine the effects of three commercially available disinfectants on the reduction of Alicyclobacillus acidoterrestris spores in single-strength apple juice applied to stainless steel surfaces. Apple juice was inoculated with A. acidoterrestris spores, spread onto the surface of stainless steel chips (SSC), dried to obtain spore concentrations of approximately 10(4) CFU/cm2, and treated with disinfectants at temperatures ranging from 40 to 90 degrees C. The concentrations of disinfectants were 200, 500, 1,000, and 2,000 ppm of total chlorine for Clorox (CL) (sodium hypochlorite); 50, 100, and 200 ppm of total chlorine for Carnebon 200 (stabilized chlorine dioxide); and 1,500, 2,000, and 2,600 ppm for Vortexx (VOR) (hydrogen peroxide, peroxyacetic acid, and octanoic acid). For all temperatures tested, VOR at 2,600 ppm (90 degrees C) and CL at 2,000 ppm (90 degrees C) were the most inhibitory against A. acidoterrestris spores, resulting in 2.55- and 2.32-log CFU/cm2 reductions, respectively, after 2 min. All disinfectants and conditions tested resulted in the inactivation of A. acidoterrestris spores, with a maximum reduction of > 2 log CFU/cm2. Results from this study indicate that A. acidoterrestris spores, in single-strength apple juice, may be effectively reduced on stainless steel surface by VOR and CL, which may have practical applications in the juice industry.


Subject(s)
Beverages/microbiology , Disinfectants/pharmacology , Food Preservation/methods , Gram-Positive Endospore-Forming Rods/drug effects , Chlorine Compounds/pharmacology , Colony Count, Microbial , Dose-Response Relationship, Drug , Food Microbiology , Gram-Positive Endospore-Forming Rods/growth & development , Hydrogen Peroxide/pharmacology , Malus/microbiology , Oxides/pharmacology , Peracetic Acid/pharmacology , Sodium Hypochlorite/pharmacology , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Stainless Steel , Temperature
2.
J Food Prot ; 69(8): 1865-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16924911

ABSTRACT

Studies were conducted to evaluate the combined effect of selected acidulants (acetic, citric, malic, and phosphoric acid) and heat on foodborne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes) in pureed green beans. To establish a consistent reference point for comparison, the molar concentrations of the acids remained constant while the acid-to-puree ratio, titratable acidity, and undissociated acid were either measured or calculated for a target acidified green beans at a pH of 3.8, 4.2, and 4.6. The D-values at 149 degrees F were used as the criteria for acid efficacy. Generally, acetic acid (puree, pH 3.8 and 4.2) represented the most effective acid with comparatively low D-values irrespective of the target microorganism. A 10-s heating at 149 degrees F inactivated approximately 10(6) CFU/ml of E. coli O157:H7 in pureed beans at pH 3.8. The efficacy of acetic acid is likely related to the elevated percent titratable acidity, undissociated acid, and acid-to-puree ratio. The effectiveness (which in this study represents the combined effect of acid and heat) of the remaining acids (citric, malic, and phosphoric) at puree pH values of 3.8 and 4.2 were statistically insignificant (alpha = 0.05). Surprisingly, acetic acid (puree, pH 4.6) appeared to be the least effective as compared to the other acids tested (citric, malic, and phosphoric) especially on E. coli O157:H7 cells, while L. monocytogenes had a similar resistance to all acids at puree pH 4.6. With the exception of citric acid (pH 3.8), acetic acid (pH 4.6), and malic acid (pH 3.8 and 4.6), which were statistically insignificant (P > 0.05), the D-values for L. monocytogenes were statistically different (P < or = 0.05) and higher than the D-values for E. coli under similar experimental conditions. A conservative process recommendation (referred to as the "safe harbor" process) was found sufficient and applicable to pureed green beans for the pH range studied.


Subject(s)
Acids/pharmacology , Escherichia coli O157/growth & development , Food Microbiology , Hydrogen-Ion Concentration , Listeria monocytogenes/growth & development , Vegetables/microbiology , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Drug , Escherichia coli O157/drug effects , Food Contamination/analysis , Food Contamination/prevention & control , Hot Temperature , Listeria monocytogenes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...