Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-33772542

ABSTRACT

The germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC). This process eliminates noncoding DNA sequences that interrupt genes and also deletes hundreds of germline-limited open reading frames (ORFs) that are transcribed during genome rearrangement. Here, we update the set of transcribed germline-limited ORFs (TGLOs) in O. trifallax. We show that TGLOs tend to be expressed during nuclear development and then are absent from the somatic MAC. We also demonstrate that exposure to synthetic RNA can reprogram TGLO retention in the somatic MAC and that TGLO retention leads to transcription outside the normal developmental program. These data suggest that TGLOs represent a group of developmentally regulated protein-coding sequences whose gene expression is terminated by DNA elimination.


Subject(s)
Oxytricha , Animals , Oxytricha/genetics , Gene Rearrangement , Germ Cells , DNA/metabolism , RNA/metabolism
2.
Nucleic Acids Res ; 47(18): 9741-9760, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31504770

ABSTRACT

Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.


Subject(s)
DNA, Circular/genetics , Gene Rearrangement/genetics , Oxytricha/genetics , Recombination, Genetic , Cytoplasm/genetics , DNA Transposable Elements/genetics , DNA, Protozoan/genetics , Eukaryotic Cells , Genome, Protozoan/genetics , High-Throughput Nucleotide Sequencing
3.
RNA ; 24(1): 18-29, 2018 01.
Article in English | MEDLINE | ID: mdl-29079634

ABSTRACT

Dicer-dependent small noncoding RNAs play important roles in gene regulation in a wide variety of organisms. Endogenous small interfering RNAs (siRNAs) are part of an ancient pathway of transposon control in plants and animals. The ciliate, Oxytricha trifallax, has approximately 16,000 gene-sized chromosomes in its somatic nucleus. Long noncoding RNAs establish high ploidy levels at the onset of sexual development, but the factors that regulate chromosome copy numbers during cell division and growth have been a mystery. We report a novel function of a class of Dicer (Dcl-1)- and RNA-dependent RNA polymerase (RdRP)-dependent endogenous small RNAs in regulating chromosome copy number and gene dosage in O. trifallax Asexually growing populations express an abundant class of 21-nt sRNAs that map to both coding and noncoding regions of most chromosomes. These sRNAs are bound to chromatin and their levels surprisingly do not correlate with mRNA levels. Instead, the levels of these small RNAs correlate with genomic DNA copy number. Reduced sRNA levels in dcl-1 or rdrp mutants lead to concomitant reduction in chromosome copy number. Furthermore, these cells show no signs of transposon activation, but instead display irregular nuclear architecture and signs of replication stress. In conclusion, Oxytricha Dcl-1 and RdRP-dependent small RNAs that derive from the somatic nucleus contribute to the maintenance of gene dosage, possibly via a role in DNA replication, offering a novel role for these small RNAs in eukaryotes.


Subject(s)
DNA, Protozoan/genetics , Oxytricha/genetics , RNA, Protozoan/physiology , RNA, Small Untranslated/physiology , Chromosomes/genetics , DNA Copy Number Variations , DNA Replication , Epigenesis, Genetic , Protozoan Proteins/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonuclease III/physiology
4.
Genetics ; 197(3): 839-49, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793090

ABSTRACT

The RNA polymerase II (Pol-II) holoenzyme, responsible for messenger RNA production, typically consists of 10-12 subunits. Our laboratory previously demonstrated that maternally deposited, long, noncoding, template RNAs are essential for programmed genome rearrangements in the ciliate Oxytricha trifallax. Here we show that such RNAs are bidirectionally transcribed and transported to the zygotic nucleus. The gene encoding the second-largest subunit of Pol-II, Rpb2, has undergone gene duplication, and the two paralogs, Rpb2-a and -b, display different expression patterns. Immunoprecipitation of double-stranded RNAs identified an association with Rpb2-a. Through immunoprecipitation and mass spectrometry, we show that Rpb2-a in early zygotes appears surprisingly unassociated with other Pol II subunits. A partial loss of function of Rpb2-a leads to an increase in expression of transposons and other germline-limited satellite repeats. We propose that evolutionary divergence of the Rpb2 paralogs has led to acquisition of transcription-independent functions during sexual reproduction that may contribute to the negative regulation of germline gene expression.


Subject(s)
Gene Rearrangement/genetics , Genome , Oxytricha/enzymology , Oxytricha/genetics , Protein Subunits/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Extracts , Chromatography, Liquid , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Germ Cells/metabolism , Mass Spectrometry , Oxytricha/growth & development , Peptides/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Zygote/metabolism
5.
PLoS Biol ; 11(1): e1001473, 2013.
Article in English | MEDLINE | ID: mdl-23382650

ABSTRACT

The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.


Subject(s)
DNA, Protozoan/genetics , Genome, Protozoan/genetics , Oxytricha/genetics , Base Sequence , DNA Copy Number Variations , DNA Fragmentation , Gene Amplification , Gene Rearrangement/genetics , Genes, Protozoan , Genetic Variation , Macronucleus/genetics , Molecular Sequence Data , Protein Binding , RNA, Messenger/genetics , Sequence Analysis, DNA , Telomere/genetics
6.
Cell ; 147(7): 1551-63, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22196730

ABSTRACT

Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Evolution, Molecular , Animals , Drosophila melanogaster/metabolism , Female , Gene Silencing , Male , Ovary/metabolism , RNA, Small Interfering/metabolism
7.
J Cell Biol ; 191(5): 905-13, 2010 Nov 29.
Article in English | MEDLINE | ID: mdl-21115802

ABSTRACT

Transposons are prominent features of most eukaryotic genomes and mobilization of these elements triggers genetic instability. Transposon silencing is particularly critical in the germline, which maintains the heritable genetic complement. Piwi-interacting RNAs (piRNAs) have emerged as central players in transposon silencing and genome maintenance during germline development. In particular, research on Drosophila oogenesis has provided critical insights into piRNA biogenesis and transposon silencing. In this system, the ability to place piRNA mutant phenotypes within a well-defined developmental framework has been instrumental in elucidating the molecular mechanisms underlying the connection between piRNAs and transposon control.


Subject(s)
Drosophila/growth & development , Drosophila/genetics , Gene Silencing , RNA, Small Interfering/genetics , Retroelements/genetics , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Models, Biological , Oogenesis , RNA, Small Interfering/metabolism
8.
PLoS Genet ; 6(12): e1001246, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21179579

ABSTRACT

Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA) pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Genome, Insect , Peptide Initiation Factors/metabolism , RNA Helicases/metabolism , Telomere/metabolism , Animals , Argonaute Proteins , Chromosomal Proteins, Non-Histone/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Meiosis , Peptide Initiation Factors/genetics , RNA Helicases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Telomere/genetics
9.
Cell ; 138(6): 1137-49, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19732946

ABSTRACT

Piwi-interacting RNAs (piRNAs) silence transposons and maintain genome integrity during germline development. In Drosophila, transposon-rich heterochromatic clusters encode piRNAs either on both genomic strands (dual-strand clusters) or predominantly one genomic strand (uni-strand clusters). Primary piRNAs derived from these clusters are proposed to drive a ping-pong amplification cycle catalyzed by proteins that localize to the perinuclear nuage. We show that the HP1 homolog Rhino is required for nuage organization, transposon silencing, and ping-pong amplification of piRNAs. rhi mutations virtually eliminate piRNAs from the dual-strand clusters and block production of putative precursor RNAs from both strands of the major 42AB dual-strand cluster, but not of transcripts or piRNAs from the uni-strand clusters. Furthermore, Rhino protein associates with the 42AB dual-strand cluster,but does not bind to uni-strand cluster 2 or flamenco. Rhino thus appears to promote transcription of dual-strand clusters, leading to production of piRNAs that drive the ping-pong amplification cycle.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA Transposable Elements , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Silencing , Animals , Chromatin Immunoprecipitation , Drosophila melanogaster/genetics , Heterochromatin/metabolism , RNA, Small Interfering/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...