Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2562: 407-415, 2023.
Article in English | MEDLINE | ID: mdl-36272090

ABSTRACT

Deciphering how metabolic processes contribute to control of stem cell proliferation and differentiation is essential for understanding the mechanisms of regeneration. However, much is still unknown about axolotls' metabolism, which has not been studied in detail over their lifespan or under varied experimental conditions. We summarize the theoretical underpinnings of metabolism and respirometry, and describe a closed respirometry system to investigate metabolic energetics in axolotls as a specific aspect of metabolism. Placement of post-absorptive, fairly inactive animals in the multiple-probe respirometer for 24-48 h allows us to measure changes in concentrations of respiratory gases: oxygen (atmospheric and dissolved) and carbon dioxide, while monitoring the temperature and salinity (conductivity) of the chamber's water. Respirometry data are used to calculate oxygen intake and carbon dioxide output to estimate animal's metabolic energy dynamics during the observation periods. This method creates opportunities for study of potential fluctuations in axolotls' metabolic rate as it pertains to respiratory gases' dynamics during 24-h circadian cycle, as well as examination of changes in metabolic energy management during aging, under varied environmental temperatures, during post-amputation regeneration and many other circumstances.


Subject(s)
Ambystoma mexicanum , Carbon Dioxide , Animals , Ambystoma mexicanum/metabolism , Carbon Dioxide/metabolism , Basal Metabolism , Oxygen , Water
2.
PLoS One ; 11(12): e0167547, 2016.
Article in English | MEDLINE | ID: mdl-27997545

ABSTRACT

Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.


Subject(s)
Cross-Linking Reagents/chemistry , Mass Spectrometry/methods , Proteomics/methods , Serum Albumin, Bovine/analysis , Software , Animals , Cattle , HeLa Cells , Humans , Protein Structure, Quaternary , Serum Albumin, Bovine/chemistry
3.
Am J Pathol ; 180(1): 337-50, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22074738

ABSTRACT

ß-Secretase, the rate-limiting enzymatic activity in the production of the amyloid-ß (Aß) peptide, is a major target of Alzheimer's disease (AD) therapeutics. There are two forms of the enzyme: ß-site Aß precursor protein cleaving enzyme (BACE) 1 and BACE2. Although BACE1 increases in late-stage AD, little is known about BACE2. We conducted a detailed examination of BACE2 in patients with preclinical to late-stage AD, including amnestic mild cognitive impairment, and age-matched controls, cases of frontotemporal dementia, and Down's syndrome. BACE2 protein and enzymatic activity increased as early as preclinical AD and were found in neurons and astrocytes. Although the levels of total BACE2 mRNA were unchanged, the mRNA for BACE2 splice form C (missing exon 7) increased in parallel with BACE2 protein and activity. BACE1 and BACE2 were strongly correlated with each other at all levels, suggesting that their regulatory mechanisms may be largely shared. BACE2 was also elevated in frontotemporal dementia but not in Down's syndrome, even in patients with substantial Aß deposition. Thus, expression of both forms of ß-secretase are linked and may play a combined role in human neurologic disease. A better understanding of the normal functions of BACE1 and BACE2, and how these change in different disease states, is essential for the future development of AD therapeutics.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain Chemistry , Female , Humans , Male , Neprilysin/metabolism , Neurons/metabolism , RNA, Messenger/metabolism
4.
Tissue Eng Part A ; 16(5): 1595-606, 2010 May.
Article in English | MEDLINE | ID: mdl-20038211

ABSTRACT

Human adipose-derived stromal cells (ASCs) have been shown to possess therapeutic potential in a variety of settings, including cutaneous wound healing; however, it is unknown whether the regenerative properties of this cell type can be applied to diabetic ulcers. ASCs collected from elective surgical procedures were used to treat full-thickness dermal wounds in leptin receptor-deficient (db/db) mice. Cells were delivered either as multicellular aggregates or as cell suspensions to determine the impact of cell formulation and delivery methods on biological activity and in vivo therapeutic effect. After treatment with ASCs that were formulated as multicellular aggregates, diabetic wounds experienced a significant increase in the rate of wound closure compared to wounds treated with an equal number of ASCs delivered in suspension. Analysis of culture supernatant and gene arrays indicated that ASCs formulated as three-dimensional aggregates produce significantly more extracellular matrix proteins (e.g., tenascin C, collagen VI alpha3, and fibronectin) and secreted soluble factors (e.g., hepatocyte growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-14) compared to monolayer culture. From these results, it is clear that cell culture, formulation, and delivery method have a large impact on the in vitro and in vivo biology of ASCs.


Subject(s)
Adipocytes/transplantation , Adipose Tissue/cytology , Diabetes Mellitus/pathology , Drug Delivery Systems/methods , Spheroids, Cellular/cytology , Wound Healing , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Aggregation , Cell Culture Techniques , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Humans , Male , Mass Spectrometry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Stromal Cells/transplantation , Time Factors
5.
Cancer Res ; 68(12): 4843-52, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18559532

ABSTRACT

Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53-containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective.


Subject(s)
DNA Damage/drug effects , DNA Damage/radiation effects , Gene Products, tax/physiology , Mutation/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cells, Cultured , Dimerization , Etoposide/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/radiation effects , Humans , Immunoblotting , Luciferases/metabolism , Mice , Mitomycin/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Proteins/metabolism , Ultraviolet Rays , Vinblastine/pharmacology , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...