Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Nat Commun ; 15(1): 4639, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821924

ABSTRACT

Silicon photonic integrated circuit foundries enable wafer-level fabrication of entire electro-optic systems-on-a-chip for applications ranging from datacommunication to lidar to chemical sensing. However, silicon's indirect bandgap has so far prevented its use as an on-chip optical source for these systems. Here, we describe a fullyintegrated broadband silicon waveguide light source fabricated in a state-of-the-art 300-mm foundry. A reverse-biased p-i-n diode in a silicon waveguide emits broadband near-infrared optical radiation directly into the waveguide mode, resulting in nanowatts of guided optical power from a few milliamps of electrical current. We develop a one-dimensional Planck radiation model for intraband emission from hot carriers to theoretically describe the emission. The brightness of this radiation is demonstrated by using it for broadband characterization of photonic components including Mach-Zehnder interferometers and lattice filters, and for waveguide infrared absorption spectroscopy of liquid-phase analytes. This broadband silicon-based source can be directly integrated with waveguides and photodetectors with no change to existing foundry processes and is expected to find immediate application in optical systems-on-a-chip for metrology, spectroscopy, and sensing.

3.
Opt Lett ; 48(23): 6248-6250, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039238

ABSTRACT

We report a femtosecond Kerr-lens mode-locked (KLM) Alexandrite laser resonantly pumped by a 589 nm yellow laser. The 4 nJ pulses as short as 42 fs were obtained corresponding to a peak power of 100 kW. With the repetition rate of 104 MHz, the average power of 420 mW was attained. The time-bandwidth product of generated laser pulse was measured to be 0.324 with a beam quality factor of M2 ≤ 1.13. The exceptional performance of visible femtosecond laser may find potential applications in various fields.

4.
Appl Opt ; 62(36): 9553-9558, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38108780

ABSTRACT

Antireflection (AR) coatings are essential to the performance of optical systems; without them, surface reflections increase significantly at steep angles and become detrimental to the functionality. AR coatings apply to a wide range of applications from solar cells and laser optics to optical windows. Many times, operational conditions include high temperatures and steep angles of incidence (AOIs). The implementation of AR coatings is extremely challenging in these conditions. Nanoporous coatings made from high-temperature-tolerant materials offer a solution to this problem. The careful selection of materials is needed to prevent delamination when exposed to high temperatures, and an optimal optical design is needed to lower surface reflections at both the normal incidence and steep AOIs. This paper presents nanoporous silicon dioxide and hafnium dioxide coatings deposited on a sapphire substrate using oblique angle deposition by electron beam evaporation, a highly accurate deposition technique for thin films. Developed coatings were tested in a controlled temperature environment and demonstrated thermal stability at temperatures up to 800°C. Additional testing at room temperature demonstrated the reduction of power reflections near optimal for AOIs up to 70° for a design wavelength of 1550 nm. These findings are promising to help extend the operation of technology at extreme temperatures and steep angles.

5.
Opt Lett ; 48(21): 5751-5754, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910750

ABSTRACT

We demonstrated a compact and power-efficient multi-stage pulsed end-pumped amplifier with stabilized output power of 450 W and near-diffraction-limited beam quality (M2 < 1.2) at a repetition rate of 1 MHz. The pulsed amplifier produced an exceptional average power and optimal beam quality achieved in laser diode (LD) end-pumped Yb:YAG thin rod configuration at room temperature. A preliminary pulse compression with a chirped volume Bragg grating (CVBG) was performed reducing pulse duration to ∼730 fs at a compression efficiency of 90%. With the combined features, including compactness, reliability, and efficiency, of the end-pumped scheme, the demonstrated laser system would be of great value in both industry and scientific research.

6.
Opt Express ; 31(20): 32010-32016, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859013

ABSTRACT

We demonstrate a Ti:Sapphire laser generating in excess of 1.2 W in continuous-wave operation when pumped directly with four green laser diodes eliminating the need for a complex pump laser. As a result, improvement of laser efficiency is achieved without sacrificing beam quality. Tunability within the range of 740-840 nm is attained validating the concept of a direct laser-diode pumped Ti:Sapphire laser.

7.
Urology ; 179: 4, 2023 09.
Article in English | MEDLINE | ID: mdl-37537010
8.
Urology ; 179: 1-4, 2023 09.
Article in English | MEDLINE | ID: mdl-37343680
11.
Opt Lett ; 47(15): 3640-3643, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35913277

ABSTRACT

Monolayer transition metal dichalcogenides (TMDCs), like MoS2, MoSe2, WS2, and WSe2, feature direct bandgaps, strong spin-orbit coupling, and exciton-polariton interactions at the atomic scale, which could be harnessed for efficient light emission, valleytronics, and polaritonic lasing, respectively. Nevertheless, to build next-generation photonic devices that make use of these features, it is first essential to model the all-optical control mechanisms in TMDCs. Herein, a simple model is proposed to quantify the performance of a 35-µm-long Si3N4 waveguide-integrated all-optical MoSe2 modulator. Using this model, a switching energy of 14.6 pJ is obtained for a transverse-magnetic (TM) and transverse-electric (TE) polarized pump signals at λ = 480 nm. Moreover, maximal extinction ratios of 20.6 dB and 20.1 dB are achieved for a TM and TE polarized probe signal, respectively, at λ = 500 nm with an ultra-low insertion loss of <0.3 dB. Moreover, the device operates with an ultrafast recovery time of 50 ps, while maintaining a high extinction ratio for practical applications. These findings facilitate modeling and designing novel TMDC-based photonic devices.

12.
Nano Lett ; 22(15): 6254-6261, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35867898

ABSTRACT

Layered van der Waals materials allow creating unique atomic-void channels with subnanometer dimensions. Coupling light into these channels may further advance sensing, quantum information, and single molecule chemistries. Here, we examine theoretically limits of light guiding in atomic-void channels and show that van der Waals materials exhibiting strong resonances, excitonic and polaritonic, are ideally suited for deeply subwavelength light guiding. We predict that excitonic transition metal dichalcogenides can squeeze >70% of optical power in just <λ/100 thick channel in the visible and near-infrared. We also show that polariton resonances of hexagonal boron nitride allow deeply subwavelength (<λ/500) guiding in the mid-infrared. We further reveal effects of natural material anisotropy and discuss the influence of losses. Such van der Waals channel waveguides while offering extreme optical confinement exhibit significantly lower loss compared to plasmonic counterparts, thus paving the way to low-loss and deeply subwavelength optics.

13.
Sex Med ; 10(5): 100543, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35843193

ABSTRACT

BACKGROUND: Erectile dysfunction (ED) is an adverse effect of many medications. AIM: We used a national pharmacovigilance database to assess which medications had the highest reported frequency of ED. METHODS: The Food and Drug Administration Adverse Event Reporting System (FAERS) was queried to identify medications with the highest frequency of ED adverse event reports from 2010 to 2020. Phosphodiesterase-5 inhibitors and testosterone were excluded because these medications are often used as treatments for men with ED. The 20 medications with the highest frequency of ED were included in the disproportionality analysis. OUTCOMES: Proportional Reporting Ratios (PRRs) and their 95% confidence intervals were calculated. RESULTS: The 20 medications accounted for 6,142 reports of ED. 5-α reductase inhibitors (5-ARIs) and neuropsychiatric medications accounted for 2,823 (46%) and 2,442 (40%) of these reports respectively. Seven medications showed significant levels of disproportionate reporting with finasteride and dutasteride having the highest PRRs: 110.03 (103.14-117.39) and 9.40 (7.83-11.05) respectively. The other medications are used in a wide variety of medical fields such as cardiology, dermatology, and immunology. CLINICAL IMPLICATIONS: Physicians should be familiar with these medications and understand their respective mechanisms of action, so that they may counsel patients appropriately and improve their quality of life. STRENGTHS AND LIMITATIONS: The strength of the study is its large sample size and that it captures pharmacologic trends on a national level. Quantitative and comparative "real-world" data is lacking for the most common medications associated with ED. The limitation is that the number of reported events does not establish causality and cannot be used to calculate ED incidence rates. CONCLUSION: In a national pharmacovigilance database, 5-ARIs and neuropsychiatric medications had the highest reports of ED adverse effects. There were many other medications used in a variety of medical fields that were also associated with ED. Kaplan-Marans E, Sandozi A, Martinez M, et al. Medications Most Commonly Associated With Erectile Dysfunction: Evaluation of the Food and Drug Administration National Pharmacovigilance Database. Sex Med 2022;10:100543.

14.
Nano Lett ; 22(15): 6194-6199, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35899937

ABSTRACT

We study theoretically and experimentally the nonlinear THz emission from plasmonic metasurfaces and show that a thin indium-tin oxide (ITO) film significantly affects the nonlinear dynamics of the system. Specifically, the presence of the ITO film leads to 2 orders of magnitude stronger THz emission compared to a metasurface on glass. It also shows a different power law, signifying different dominant emission mechanisms. In addition, we find that the hot-electron dynamics in the system strongly modify the coupling between the plasmonic metasurface and the free electrons in the ITO at the picosecond time scale. This results in striking dynamic THz emission phenomena that were not observed to date. Specifically, we show that the generated THz pulse can be shortened in time and thus broadened in frequency with twice the bandwidth compared to previous studies and to an uncoupled system. Our findings open the door to design efficient and dynamic metasurface THz emitters.

15.
Opt Express ; 30(2): 1950-1966, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209346

ABSTRACT

Graphene has emerged as an ultrafast photonic material for on-chip all-optical switching applications. However, its atomic thickness limits its interaction with guided optical modes, resulting in a high switching energy per bit. Herein, we propose a novel technique to electrically control the switching energy of an all-optical graphene switch on a silicon nitride waveguide. Using this technique, we theoretically demonstrate a 120 µm long all-optical graphene switch with an 8.9 dB extinction ratio, 2.4 dB insertion loss, a switching time of <100 fs, a fall time of <5 ps, and a 235 fJ switching energy at 2.5 V bias, where the applied voltage reduces the switching energy by ∼16×. This technique paves the way for the emergence of ultra-efficient all-optical graphene switches that will meet the energy demands of next-generation photonic computing systems, and it is a promising alternative to lossy plasmon-enhanced devices.

16.
J Phys Chem Lett ; 13(4): 997-1001, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35060736

ABSTRACT

The Landau damping (LD) mechanism of the localized surface plasmon (LSP) decay is studied for the hybrid nanoplasmonic (metal core/dielectric shell) structures. It is shown that LD in hybrid structures is strongly affected by the permittivity and the electron effective mass in the dielectric shell in accordance with previous observations by Kreibig, and the strength of LD can be enhanced by an order of magnitude for some combinations of permittivity and effective mass. The physical reason for this effect is identified as an electron spillover into the dielectric where the electric field is higher than that in the metal and the presence of quasi-discrete energy levels in the dielectric. The theory indicates that the transition absorption at the metal-dielectric interface is a dominant contribution to LD in such hybrid structures. Thus, by judicious selection of dielectric material and its thickness, one can engineer decay rates and hot carrier production for important applications, such as photodetection and photochemistry.

17.
Opt Express ; 29(23): 37302-37313, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808805

ABSTRACT

A practical, broadband, all-optical linearization concept for a Mach-Zehnder modulator (MZM) is proposed and demonstrated. The unique transmitter design includes an amplitude modulated (AM) standard MZM with two optical outputs, where the alternative (or complimentary) output is combined with the laser carrier to create a linearizing optical local oscillator, which when coherently combined with the AM signal fully cancels 3rd order intermodulation distortion components. Using this scheme, record linearity is achieved for a non-amplified RF photonic link, with spurious free dynamic range (SFDR) of 118.5 dB.Hz2/3 and 123 dB.Hz2/3 for single and dual fiber/photodetector schemes.

18.
Sci Rep ; 11(1): 1287, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446735

ABSTRACT

Densely integrated active photonics is key for next generation on-chip networks for addressing both footprint and energy budget concerns. However, the weak light-matter interaction in traditional active Silicon optoelectronics mandates rather sizable device lengths. The ideal active material choice should avail high index modulation while being easily integrated into Silicon photonics platforms. Indium tin oxide (ITO) offers such functionalities and has shown promising modulation capacity recently. Interestingly, the nanometer-thin unity-strong index modulation of ITO synergistically combines the high group-index in hybrid plasmonic with nanoscale optical modes. Following this design paradigm, here, we demonstrate a spectrally broadband, GHz-fast Mach-Zehnder interferometric modulator, exhibiting a high efficiency signified by a miniscule VπL of 95 V µm, deploying a one-micrometer compact electrostatically tunable plasmonic phase-shifter, based on heterogeneously integrated ITO thin films into silicon photonics. Furthermore we show, that this device paradigm enables spectrally broadband operation across the entire telecommunication near infrared C-band. Such sub-wavelength short efficient and fast modulators monolithically integrated into Silicon platform open up new possibilities for high-density photonic circuitry, which is critical for high interconnect density of photonic neural networks or applications in GHz-fast optical phased-arrays, for example.

19.
Opt Lett ; 45(13): 3525-3528, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630889

ABSTRACT

We introduce a new, to the best of our knowledge, passive technique of mitigating the phase noise in optical frequency combs (FC) by reducing the drift of offset frequency. This can be achieved by customizing the dispersion to attain a power law dependence of the wave vector on frequency, k(ω)∼ωα, ensuring a constant ratio between group and phase velocities. When this condition is maintained, the drift offset frequency is passively mitigated, and phase noise is reduced. Using quantum cascade laser (QCL) FCs as an example, we demonstrate, analytically and numerically, that the desired dispersion can be easily engineered by properly adjusting the thickness of the QCL active region and that stable offset frequency can be combined with low residual group dispersion.

20.
ACS Omega ; 5(24): 14711-14719, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596608

ABSTRACT

We investigate a waveguide-integrated plasmonic graphene photodetector operating based on the hot carrier photo-bolometric effect, which is characterized simultaneously by high responsivity on the scale of hundreds of A/W and high speed on the scale of 100's of GHz that is limited only by the product of the electronic heat capacitance and thermal resistance. We develop a theory of the bolometric effect originating from the band nonparabolicity of graphene and estimate responsivity due to the bolometric effect, which is shown to significantly surpass the responsivity of the coexisting photoconductive effect, thus convincingly demonstrating the dominance of the bolometric effect. Based on the theory, we propose a novel detector configuration based on a hybrid waveguide that allows for efficient absorption in graphene over a short distance and subsequently a large change of conductivity. The results demonstrate the potential of graphene for high-speed communication systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...