Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 22: 101309, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38550881

ABSTRACT

The increasing global population drives a rising demand for food, particularly fish as a preferred protein source, straining capture fisheries. Overfishing has depleted wild stocks, emphasizing the need for advanced aquaculture technologies. Unlike agriculture, aquaculture has not seen substantial technological advancements. Artificial Intelligence (AI) tools like Internet of Things (IoT), machine learning, cameras, and algorithms offer solutions to reduce human intervention, enhance productivity, and monitor fish health, feed optimization, and water resource management. However, challenges such as data collection, standardization, model accuracy, interpretability, and integration with existing aquaculture systems persist. This review explores the adoption of AI techniques and tools to advance the aquaculture industry and bridge the gap between food supply and demand.

2.
Microb Pathog ; 187: 106512, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154451

ABSTRACT

Myxozoans are obligate endoparasites, cosmopolitan in distribution with both vertebrate and invertebrate hosts. Their myxospores consist of shell valves, polar capsules with coiled polar tubules that are extrudible, and infective amoeboid germs. Myxozoan parasites are most abundant, and due to their increasing number in recent years, they can pose an emerging threat to the fish industry worldwide. Hence, the immediate need is to devise a strategy to understand and detect parasites and parasitism. They may proliferate to different organs with the advancement of infection. This all warrants the development/devising of strategies and results of integrative studies in order to identify these dreadful parasites and resolve taxonomic issues. Different methods whether classical methods including gross morphology or advanced methods such as electron microscopy (SEM, TEM, STEM), Confocal laser scanning microscopy (CLSM), histopathological studies, site preference, host and tissue specificity, a molecular approach using new markers can be clubbed for identification because these parasites are hidden and are difficult to recognize. This group was earlier classified only on the basis of myxospores morphology, but due to the high structural variability of this group advanced methods and approaches have to be implied which can minimize the problems in assigning new species.


Subject(s)
Fish Diseases , Myxozoa , Parasitic Diseases, Animal , Animals , Phylogeny , Parasitic Diseases, Animal/parasitology , Fishes/parasitology , Myxozoa/genetics , Fish Diseases/parasitology , Aquaculture
3.
Food Chem X ; 20: 101051, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144846

ABSTRACT

Aquaculture, a rapidly expanding global food sector faces challenges like pathogenic infections, water quality management and sustainability. Silver nanoparticles (AgNPs) have emerged as promising tools in aquaculture due to their antimicrobial, antiviral and antifungal properties. AgNPs offer alternatives to traditional antimicrobial agents. Their small size and unique physicochemical properties enhance antimicrobial activity, effectively inhibiting pathogen growth and reducing disease incidence in aquatic organisms. Additionally, AgNPs can improve water quality by catalyzing the removal of pollutants, heavy metals and nutrients, reducing environmental impacts. Despite their potential benefits, several challenges and knowledge gaps exist in the utilization of AgNPs in aquaculture. Addressing challenges related to regulation, sustainability and environmental impact will be crucial for realizing their full potential in the industry. Therefore, the present review aims to provide insight into the role of AgNPs, its challenges in aquaculture and also highlights key areas for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...