Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Electron Mater ; 6(2): 1483-1492, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38435802

ABSTRACT

III-V semiconductor light-emitting diodes (LEDs) are a promising candidate for demonstrating electroluminescent cooling. However, exceptionally high internal quantum efficiency designs are paramount to achieving this goal. A significant loss mechanism preventing unity internal quantum efficiency in GaAs-based devices is nonradiative surface recombination at the perimeter sidewall. To address this issue, an unconventional LED design is presented, in which the distance from the central current injection area to the device's perimeter is extended while maintaining a constant front contact grid size. This approach effectively moves the perimeter beyond the lateral spread of current at an operating current density of 101-102 A/cm2. In p-i-n GaAs/InGaP double heterojunction LEDs fabricated with varying sizes and perimeter extensions, a 19% relative increase in external quantum efficiency is achieved by extending the perimeter-to-contact distance from 25 to 250 µm for a front contact grid size of 450 × 450 µm2. Utilizing an in-house developed Photon Dynamics model, the corresponding relative increase in internal quantum efficiency is estimated to be 5%. These results are ascribed to a significant reduction in perimeter recombination due to a lower perimeter-to-surface area (P/A) ratio. However, in contrast to lowering the P/A ratio by increasing the front contact grid size of LEDs, the present method enables these improvements without affecting the required maximum current density in the microscopic active LED area under the front contact grid. These findings aid in the advancement of electroluminescent cooling in LEDs and could prove useful in other dedicated semiconductor devices where perimeter recombination is limiting.

2.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299613

ABSTRACT

In this article, we investigate optically induced terahertz radiation in ferromagnetic FeCo layers of varying thickness on Si and SiO2 substrates. Efforts have been made to account for the influence of the substrate on the parameters of the THz radiation generated by the ferromagnetic FeCo film. The study reveals that the thickness of the ferromagnetic layer and the material of the substrate significantly affect the generation efficiency and spectral characteristics of the THz radiation. Our results also emphasize the importance of accounting for the reflection and transmission coefficients of the THz radiation when analyzing the generation process. The observed radiation features correlate with the magneto-dipole mechanism, triggered by the ultrafast demagnetization of the ferromagnetic material. This research contributes to a better understanding of THz radiation generation mechanisms in ferromagnetic films and may be useful for the further development of THz technology applications in the field of spintronics and other related areas. A key discovery of our study is the identification of a nonmonotonic relationship between the radiation amplitude and pump intensity for thin films on semiconductor substrates. This finding is particularly significant considering that thin films are predominantly used in spintronic emitters due to the characteristic absorption of THz radiation in metals.

3.
Materials (Basel) ; 14(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34772004

ABSTRACT

We report an increase in terahertz (THz) radiation efficiency due to FeCo/WSe2 structures in the reflection geometry. This can be attributed to an absorption increase in the alloy FeCo layer at the input FeCo/WSe2 interface due to constructive interference, as well as to the backward transport of hot carriers from FeCo to WSe2. In contrast to the transmission geometry, the THz generation efficiency in the reflection is much less dependent on the magnetic layer thickness. Our results suggest a cheap and efficient way to improve the characteristics of THz spintronic emitters with the conservation of a full set of their important properties.

4.
Sci Rep ; 11(1): 697, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33437014

ABSTRACT

Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a "degree of freedom", which is one of the main parameters that ensure efficient quantum computing. However, even for visible light, polarization control is in most cases separated from light emission. In this paper, we report on a new type of polarization control, implemented directly in a spintronic terahertz emitter. The principle of control, realized by a weak magnetic field at room temperature, is based on a spin-reorientation transition (SRT) in an intermetallic heterostructure TbCo2/FeCo with uniaxial in-plane magnetic anisotropy. SRT is implemented under magnetic field of variable strength but of a fixed direction, orthogonal to the easy magnetization axis. Variation of the magnetic field strength in the angular (canted) phase of the SRT causes magnetization rotation without changing its magnitude. The charge current excited by the spin-to-charge conversion is orthogonal to the magnetization. As a result, THz polarization rotates synchronously with magnetization when magnetic field strength changes. Importantly, the radiation intensity does not change in this case. Control of polarization by SRT is applicable regardless of the spintronic mechanism of the THz emission, provided that the polarization direction is determined by the magnetic moment orientation. The results obtained open the prospect for the development of the SRT approach for THz emission control.

SELECTION OF CITATIONS
SEARCH DETAIL
...