Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Bioeng Biomech ; 19(2): 11-20, 2017.
Article in English | MEDLINE | ID: mdl-28869633

ABSTRACT

PURPOSE: Bone quality varies from one patient to another extensively. Young's modulus may deviate up to 40% of normal bone quality, which results into alteration of bone stiffness immensely. The prime goal of this study is to design the optimum dental implant considering the mechanical response at bone implant interfaces for a patient with specific bone quality. METHOD: 3D models of mandible and natural molar tooth were prepared from CT scan data, while dental implants were modelled using different diameter, length and porosity and FE analysis was carried out. Based on the variation in bone density, five different bone qualities were considered. First, failure analysis of implants, under maximum biting force of 250 N had been performed. Next, the implants that remained were selected for observation of mechanical response at bone implant interfaces under common chewing load of 120 N. RESULT: Maximum Von Mises stress did not surpass the yield strength of the implant material (TiAl4V). However, factor of safety of 1.5 was considered and all but two dental implants survived the design stress or allowable stress. Under 120 N load, distribution of Von Mises stress and strain at the boneimplant interface corresponding to the rest of the implants for five bone conditions were obtained and enlisted. CONCLUSION: Implants exhibiting interface strain within 1500-3000 microstrain range show the best bone remodelling and osseointegration. So, implant models having this range of interface strains were selected corresponding to the particular bone quality. A set of optimum dental implants for each of the bone qualities were predicted.


Subject(s)
Dental Implants , Dental Stress Analysis/methods , Models, Biological , Molar/physiology , Molar/surgery , Prosthesis Design/methods , Bite Force , Bone Density/physiology , Compressive Strength/physiology , Computer Simulation , Computer-Aided Design , Dental Implantation/methods , Elastic Modulus/physiology , Humans , Molar/diagnostic imaging , Porosity , Stress, Mechanical , Tomography, X-Ray Computed/methods
2.
Mater Sci Eng C Mater Biol Appl ; 64: 436-443, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27127074

ABSTRACT

In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples.


Subject(s)
Cell Proliferation , Compressive Strength , Osteoblasts/metabolism , Titanium/chemistry , Cell Line , Finite Element Analysis , Humans , Osteoblasts/cytology , Porosity , X-Ray Microtomography
3.
Int J Biomater ; 2014: 313975, 2014.
Article in English | MEDLINE | ID: mdl-25400663

ABSTRACT

The present study investigates the mechanical response of representative volume elements of porous Ti-6Al-4V alloy, to arrive at a desired range of pore geometries that would optimize the reduction in stiffness necessary for biocompatibility with the stress concentration arising around the pore periphery, under physiological loading conditions with respect to orthopedic hip implants. A comparative study of the two is performed with the aid of a newly defined optimizing parameter called pore efficiency that takes into consideration both the stiffness quantity and the stress localization around pores. To perform a detailed analysis of the response of the porous structure over the entire spectrum of loading conditions that a hip implant is subjected to in vivo, the mechanical responses of 3D finite element models of cubic and rectangular parallelepiped geometries, with porosities varying over a range of 10% to 60%, are simulated under representative compressive, flexural as well as combined loading conditions. The results that are obtained are used to suggest a range of pore diameters that lower the effective stiffness and modulus of the implant to around 60% of the stiffness and modulus of dense solid implants while keeping the stress levels within permissible limits.

SELECTION OF CITATIONS
SEARCH DETAIL
...