Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35057260

ABSTRACT

Controllable linear actuation of polypyrrole (PPy) is the envisaged goal where only one ion dominates direction (here anions) in reversible redox cycles. PPy with polyethylene oxide (PEO) doped with dodecylbenzenesulfonate forms PPy-PEO/DBS films (PPy-PEO), which are applied in propylene carbonate (PC) solvent with electrolytes such as 1-ethyl-2,3-dimethylimidazolium trifluoromethanesulfonate (EDMICF3SO3), sodium perchlorate (NaClO4) and tetrabutylammonium hexafluorophosphate (TBAPF6) and compared in their linear actuation properties with pristine PPy/DBS samples. PPy-PEO showed for all applied electrolytes that only expansion at oxidation appeared in cyclic voltammetric studies, while pristine PPy/DBS had mixed-ion actuation in all electrolytes. The electrolyte TBAPF6-PC revealed for PPy-PEO best results with 18% strain (PPy/DBS had 8.5% strain), 2 times better strain rates, 1.8 times higher electronic conductivity, 1.4 times higher charge densities and 1.5 times higher diffusion coefficients in comparison to PPy/DBS. Long-term measurements up to 1000 cycles at 0.1 Hz revealed strain over 4% for PPy-PEO linear actuators, showing that combination of PPy/DBS with PEO gives excellent material for artificial muscle-like applications envisaged for smart textiles and soft robotics. FTIR and Raman spectroscopy confirmed PEO content in PPy. Electrochemical impedance spectroscopy (EIS) of PPy samples revealed 1.3 times higher ion conductivity of PPy-PEO films in PC solvent. Scanning electron microscopy (SEM) was used to investigate morphologies of PPy samples, and EDX spectroscopy was conducted to determine ion contents of oxidized/reduced films.

2.
Polymers (Basel) ; 13(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805413

ABSTRACT

Modern personal protective armor has been generally based on the Kevlar fabrics, with the main goal to offer defense against bullets. In addition to the high cost and poor processability, Kevlar has the disadvantage of limited stab-proofing capability. On the other hand, a large number of crimes involving deadly injures represent knife attacks. Our goal in this work was to investigate composites based on traditional commercially available fabrics of linen and silk, using different adhesives-polymers for forming laminates. The silk composites also contained different amounts of in-woven polyester. Three different water-based adhesives of polyurethane, urea formaldehyde and polyvinyl alcohol were considered. It was found, that besides the strength of the fabrics themselves, the adhesives polymers played a crucial role in the obtained performance of the laminates. The laminates were characterized in their mechanical properties, as well as with scanning electron microscopy and FTIR spectroscopy.

3.
Polymers (Basel) ; 12(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927713

ABSTRACT

In films of conducting polymers, the electrochemical reaction(s) drive the simultaneous variation of different material properties (reaction multifunctionality). Here, we present a parallel study of actuation-sensing-energy storage triple functionality of polypyrrole (PPy) blends with dodecylbenzenesulfonate (DBS-), PPy/DBS, without and with inclusion of polyethyleneoxide, PPy-PEO/DBS. The characterization of the response of both materials in aqueous solutions of four different salts indicated that all of the actuating, sensing and charge storage responses were, independent of the electrolyte, present for both materials, but stronger for the PPy-PEO/DBS films: 1.4× higher strains, 1.3× higher specific charge densities, 2.5× higher specific capacitances and increased ion-sensitivity towards the studied counterions. For both materials, the reaction energy, the material potential and the strain variations adapt to and sense the electrical and chemical (exchanged cation) conditions. The driving and the response of actuation, sensing and charge can be controlled/read, simultaneously, via just two connecting wires. Only the cooperative actuation of chemical macromolecular motors from functional cells has such chemical multifunctionality.

4.
Polymers (Basel) ; 12(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422917

ABSTRACT

While increasing power output is the most straight-forward solution for faster and stronger motion in technology, sports, or elsewhere, efficiency is what separates the best from the rest. In nature, where the possibilities of power increase are limited, efficiency of motion is particularly important; the same principle can be applied to the emerging biomimetic and bio-interacting technologies. In this work, by applying hints from nature, we consider possible approaches of increasing the efficiency of motion through liquid medium of bilayer ionic electroactive polymer actuations, focusing on the reduction of friction by means of surface tension and hydrophobicity. Conducting polyethylene terephthalate (PET) bilayers were chosen as the model actuator system. The actuation medium consisted of aqueous solutions containing tetramethylammonium chloride and sodium dodecylbenzenesulfonate in different ratios. The roles of ion concentrations and the surface tension are discussed. Hydrophobicity of the PET support layer was further tuned by adding a spin-coated silicone layer to it. As expected, both approaches increased the displacement-the best results having been obtained by combining both, nearly doubling the bending displacement. The simple approaches for greatly increasing actuation motion efficiency can be used in any actuator system operating in a liquid medium.

5.
Polymers (Basel) ; 11(5)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083347

ABSTRACT

Either as salts or room temperature ionic liquids, fluorinated anion-based electrolytes have been a common choice for ionic electroactive polymer actuators, both linear and bending. In the present work, propylene carbonate solutions of four electrolytes of the three hugely popular anions-triflouromethanesulfonate, bis(trifluoromethane)sulfonimide, and hexafluorophosphate were compared and evaluated in polypyrrole linear actuators. The actuation direction, the characteristics-performance relations influence the behavior of the actuators. Isotonic Electro-chemo-mechanical deformation (ECMD) measurements were performed to study the response of the PPy/DBS samples. The highest strain for pristine PPy/DBS linear actuators was found in range of 21% for LiTFSI, while TBAPF6 had the least cation involvement, suggesting the potential for application in durable and controllable actuators. Interesting cation effects on the actuation of the same anions (CF3SO3-) were also observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...