Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Entropy (Basel) ; 25(3)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36981378

ABSTRACT

Interdiffusion of the elements in a diffusion pair consisting of Ti and an equiatomic high-entropy alloy (HEA) TiZrHfNbTaMo in the temperature range of 1473-1673 K has been studied. A calculated results phase diagram of the alloy by Thermo-Calc 2021-B software as used to determine the temperature stability range of the ß-phase in the alloy. Ti-HEA diffusion pairs were obtained by low = temperature welding and then diffusion annealing was carried out at temperatures of 1473, 1573, and 1673 K during 12, 9, and 6 h, respectively. The interdiffusion zone was profiled using electron probe microanalysis (EPMA). The diffusion parameters of the HEA's elements were obtained using Hall's method. An experimental results discussion is given.

2.
CALPHAD ; 682020.
Article in English | MEDLINE | ID: mdl-33281276

ABSTRACT

Thermodynamic descriptions in databases for applications in computational thermodynamics require representation of the Gibbs energy of stable as well as metastable phases of the pure elements as a basis to model multi-component systems. In the Calphad methodology these representations are usually based on physical models. Reasonable behavior of the thermodynamic properties of phases extrapolated far outside their stable ranges is necessary in order to avoid that they become stable just because these properties extrapolate badly. This paper proposes a method to prevent crystalline solid phases in multi-component systems to become stable again when extrapolated to temperatures far above their melting temperature.

SELECTION OF CITATIONS
SEARCH DETAIL