Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2118, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459046

ABSTRACT

We demonstrate magnetic droplet soliton pairs in all-perpendicular spin-torque nano-oscillators (STNOs), where one droplet resides in the STNO free layer (FL) and the other in the reference layer (RL). Typically, theoretical, numerical, and experimental droplet studies have focused on the FL, with any additional dynamics in the RL entirely ignored. Here we show that there is not only significant magnetodynamics in the RL, but the RL itself can host a droplet driven by, and coexisting with, the FL droplet. Both single droplets and pairs are observed experimentally as stepwise changes and sharp peaks in the dc and differential resistance, respectively. While the single FL droplet is highly stable, the coexistence state exhibits high-power broadband microwave noise. Furthermore, micromagnetic simulations reveal that the pair dynamics display periodic, quasi-periodic, and chaotic signatures controlled by applied field and current. The strongly interacting and closely spaced droplet pair offers a unique platform for fundamental studies of highly non-linear soliton pair dynamics.

2.
Phys Rev Lett ; 126(3): 037204, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33543954

ABSTRACT

Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this Letter, we demonstrate this particular aspect by using an all-optical pointlike source of continuous spin waves based on frequency comb rapid demagnetization. The emitted spin waves contain a range of k vectors and by detuning the applied magnetic field slightly off the ferromagnetic resonance (FMR), we observe X-shaped caustic spin wave patterns at 70° propagation angles as predicted by theory. When the harmonic of the light source approaches the FMR, the caustic pattern gives way to uniaxial spin wave propagation perpendicular to the in-plane component of the applied field. This field-controlled propagation pattern and directionality of optically emitted short-wavelength spin waves provide additional degrees of freedom when designing magnonic devices.

3.
Sci Adv ; 5(9): eaax8467, 2019 09.
Article in English | MEDLINE | ID: mdl-31799403

ABSTRACT

Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly nonlinear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer and additional computational functionality can be achieved using SW interference, SOT-driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT-driven auto-oscillations in magnetic nanoconstrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs, enabling long-range SOT-driven SW propagation for nanomagnonics, SW logic, and neuromorphic computing, directly compatible with CMOS technology.

4.
Nat Commun ; 9(1): 4374, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30348986

ABSTRACT

Short wavelength exchange-dominated propagating spin waves will enable magnonic devices to operate at higher frequencies and higher data transmission rates. While giant magnetoresistance (GMR)-based magnetic nanocontacts are efficient injectors of propagating spin waves, the generated wavelengths are 2.6 times the nano-contact diameter, and the electrical signal strength remains too weak for applications. Here we demonstrate nano-contact-based spin wave generation in magnetic tunnel junctions and observe large-frequency steps consistent with the hitherto ignored possibility of second- and third-order propagating spin waves with wavelengths of 120 and 74 nm, i.e., much smaller than the 150-nm nanocontact. Mutual synchronization is also observed on all three propagating modes. These higher-order propagating spin waves will enable magnonic devices to operate at much higher frequencies and greatly increase their transmission rates and spin wave propagating lengths, both proportional to the much higher group velocity.

5.
Phys Rev Lett ; 109(9): 097204, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-23002877

ABSTRACT

We investigate nanopillars in which two thin ferromagnetic particles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. We find that the previously unexplored limit of strong vortex core-core coupling can dominate the spin dynamics in the system. We observe experimentally and explain analytically and numerically how the 0.2 GHz gyrational resonance modes of the individual vortices are transformed into a 2 GHz collective rotational resonance mode in the configurations where the two cores form a bound pair.

6.
Phys Rev Lett ; 100(4): 047203, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352325

ABSTRACT

We study a general model of isotropic two-dimensional spin-1 magnet, which is relevant for the physics of ultracold atoms with hyperfine S=1 spins in an optical lattice at odd filling. We demonstrate a novel mechanism of soliton pairing occurring in the vicinity of a special point with an enhanced SU(3) symmetry: upon perturbing the SU(3) symmetry, solitons with odd CP2 topological charge are confined into pairs that remain stable objects.

SELECTION OF CITATIONS
SEARCH DETAIL
...