Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Lett ; 355: 141-149, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34864131

ABSTRACT

Octocrylene (OC) is an extensively prescribed organic ultraviolet B filter used in sunscreen products. Due to its extensive use, a significant level of OC is detected in marine and freshwater environments. Notably, the bioaccumulation of OC in aquatic biota may affect human health. In this study, the effect of OC on metabolism was investigated using the adipogenesis model of human bone marrow mesenchymal stem cells (hBM-MSCs). OC promoted adiponectin production during adipogenesis in hBM-MSCs compared to the vehicle-treated control (EC50, 29.6 µM). In target identification, OC directly bound to peroxisome proliferator-activated receptor (PPAR) γ (Ki, 37.8 µM). OC-bound PPARγ also significantly recruited nuclear receptor coactivator proteins SRC-1 (EC50, 54.1 µM) and SRC-2 (EC50, 58.6 µM). In the molecular docking simulation study, the optimal ligand-binding mode of OC suggested that OC is a PPARγ partial agonist. A competitive analysis with a PPARγ full agonist pioglitazone revealed that OC acted as a PPARγ partial agonist. OC altered the gene transcription profile of lipid-metabolism associated enzymes in normal human keratinocytes, primarily exposed human cells after the application of sunscreens. In conclusion, OC is a potential metabolic disrupting obesogen.


Subject(s)
Acrylates/toxicity , Adipocytes/physiology , Bone Marrow Cells/drug effects , Mesenchymal Stem Cells/drug effects , Obesity/chemically induced , PPAR gamma/agonists , Adipocytes/drug effects , Bone Marrow Cells/physiology , Catalytic Domain , Gene Expression Regulation/drug effects , Humans , Keratinocytes/drug effects , Lipid Metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Coactivator 1/genetics , Nuclear Receptor Coactivator 1/metabolism , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 2/metabolism , Protein Conformation
2.
Biomol Ther (Seoul) ; 28(5): 397-404, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32576717

ABSTRACT

Adiponectin secretion-promoting compounds have therapeutic potentials in human metabolic diseases. Diallyl biphenyl-type neolignan compounds, magnolol, honokiol, and 4-O-methylhonokiol, from a Magnolia officinalis extract were screened as adiponectin- secretion promoting compounds in the adipogenic differentiation model of human bone marrow mesenchymal stem cells (hBM-MSCs). In a target identification study, magnolol, honokiol, and 4-O-methylhonokiol were elucidated as PPARα and PPARγ dual modulators. Diallyl biphenyl-type neolignans affected the transcription of lipid metabolism-associated genes in a different way compared to those of specific PPAR ligands. The diallyl biphenyl-type neolignan structure provides a novel pharmacophore of PPARα/γ dual modulators, which may have unique therapeutic potentials in diverse metabolic diseases.

3.
Arch Toxicol ; 93(7): 1903-1915, 2019 07.
Article in English | MEDLINE | ID: mdl-31016361

ABSTRACT

Avobenzone is the most commonly used ultraviolet (UV) A filter ingredient in sunscreen. To investigate the biological activity of avobenzone in normal human epidermal keratinocytes (NHEKs), the genome-scale transcriptional profile of NHEKs was performed. In this microarray study, we found 273 up-regulated and 274 down-regulated differentially expressed genes (DEGs) in NHEKs treated with avobenzone (10 µM). Gene Ontology (GO) enrichment analysis showed that avobenzone significantly increased the DEGs associated with lipid metabolism in NHEKs. In addition, avobenzone increased the gene transcription of peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid binding protein 4 in NHEKs, implicating that avobenzone may be one of the metabolic disrupting obesogens. To confirm the obesogenic potential, we examined the effect of avobenzone on adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Avobenzone (EC50, 14.1 µM) significantly promoted adipogenesis in hBM-MSCs as its positive control obesogenic chemicals. Avobenzone (10 µM) significantly up-regulated mRNA levels of PPARγ during adipogenesis in hBM-MSCs. However, avobenzone did not directly bind to PPARγ and the avobenzone-induced adipogenesis-promoting activity was not affected by PPARγ antagonists T0070907 and GW9662. Therefore, avobenzone promoted adipogenesis in hBM-MSCs through a PPARγ-independent mechanism. This study suggests that avobenzone functions as a metabolic disrupting obesogen.


Subject(s)
Adipogenesis/drug effects , Keratinocytes/drug effects , Mesenchymal Stem Cells/drug effects , Propiophenones/toxicity , Sunscreening Agents/toxicity , Transcription, Genetic/drug effects , Adipogenesis/genetics , Animals , Down-Regulation , Genome-Wide Association Study , Humans , Keratinocytes/cytology , Mesenchymal Stem Cells/cytology , No-Observed-Adverse-Effect Level , Phenotype , Rats, Sprague-Dawley , Toxicity Tests, Acute , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...