Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 711: 135107, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31818556

ABSTRACT

Noctiluca scintillans is a bloom-forming dinoflagellate, which is widely distributed in the global coastal seas. Associated bacteria have been proven to be essential for the survival and growth of zooplanktons. However, the diversity and function of bacteria associated with Noctiluca scintillans are under studied and largely unknown. Here, we examined the diversity and function of bacteria associated with field-acquired and laboratory-maintained Noctiluca cells. Our results showed that the bacterial communities associated with the laboratory-maintained Noctiluca were dominated by Rhodobacterales, whereas those associated with the field-acquired Noctiluca varied over time. In addition, major Noctiluca-associated bacteria had low relative abundance in the ambient environment. We also observed that when field-acquired Noctiluca were cultivated with a mono-species food source, there was a shift in the associated bacterial communities. Metagenomic analysis showed that genes involved in DNA replication/repair and osmotic regulation were more abundant than other genes in the Noctiluca-associated bacterial community. Furthermore, the associated bacteria were able to degrade various complex carbohydrates and actively participate in the nitrogen cycle in their host cells. In addition, a draft genome of the Rickettsiaceae strain was recovered, and we showed that the genome did not contain genes encoding hexokinase and phosphoglucomutase, two key enzymes involved in glucose utilization. Instead, the primary energy sources of this bacteria were shown to be glutamate, glutamine and pyruvate, which might be obtained from the host. We suggest that in return, the Rickettsiaceae strain is likely to provide cofactors and amino acids to the host. This study highlights the spatial and temporal complexity of bacterial communities associated with Noctiluca, and provides valuable insights into the interaction between a host and its associated bacteria.


Subject(s)
Dinoflagellida , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...