Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 14-22, 2021 12.
Article in English | MEDLINE | ID: mdl-34890030

ABSTRACT

Adipose tissue distribution usually varies among men and women. In men, adipose tissue is known to accumulate in the abdominal region surrounding the visceral organs (android fat distribution) whereas, in women, the accumulation of adipose tissue generally occurs in the gluteal-femoral regions (gynoid fat distribution). In some cases, however, android distribution can be found in women and gynoid distribution can be found in men. The regulation of adipose tissue accumulation involves interaction of a variety of genetic and environmental factors. This review examines genetic factors that cause differential distribution of adipose tissue in different depots of the body, between men and women and between different ethnicities. Genome-wide association studies can be used to identify genetic associations with the distribution and accumulation of adipose tissue. Insight into adipose tissue accumulation and distribution mechanisms could lead to development of personalized interventions for people who develop increased fat mass.


Subject(s)
Adipogenesis/genetics , Adipose Tissue/physiology , Body Fat Distribution , Ethnicity/genetics , Genome-Wide Association Study/methods , Sex Characteristics , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/genetics , Female , Humans , Male , Obesity/ethnology , Obesity/genetics
2.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 23-32, 2021 12.
Article in English | MEDLINE | ID: mdl-34890031

ABSTRACT

Adipocytes express various enzymes, such as aldo-keto reductases (AKR1C), 11ß-hydroxysteroid dehydrogenase (11ß-HSD), aromatase, 5α-reductases, 3ß-HSD, and 17ß-HSDs involved in steroid hormone metabolism in adipose tissues. Increased activity of AKR1C enzymes and their expression in mature adipocytes might indicate the association of these enzymes with subcutaneous adipose tissue deposition. The inactivation of androgens by AKR1C enzymes increases adipogenesis and fat mass, particularly subcutaneous fat. AKR1C also causes reduction of estrone, a weak estrogen, to produce 17ß-estradiol, a potent estrogen and, in addition, it plays a role in progesterone metabolism. Functional impairments of adipose tissue and imbalance of steroid biosynthesis could lead to metabolic disturbances. In this review, we will focus on the enzymes involved in steroid metabolism and fat tissue deposition.


Subject(s)
20-Hydroxysteroid Dehydrogenases/metabolism , Adipogenesis/physiology , Adipose Tissue/enzymology , Body Fat Distribution , 11-beta-Hydroxysteroid Dehydrogenases/analysis , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , 20-Hydroxysteroid Dehydrogenases/analysis , Adipose Tissue/chemistry , Animals , Aromatase/analysis , Aromatase/metabolism , Estradiol Dehydrogenases/analysis , Estradiol Dehydrogenases/metabolism , Humans
3.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 49-55, 2021 12.
Article in English | MEDLINE | ID: mdl-34890034

ABSTRACT

OBJECTIVE: The amniotic fluid contains a large population of stem keratinocytes demonstrating minimal immunological rejection. Recent evidence suggests that stem cells from the amniotic fluid can be employed in the field of tissue engineering. In this work we identified precursors of the epithelial cells and expanded them in vitro. MATERIALS AND METHODS: After collecting samples of amniotic fluid and separating the cells via centrifugation, we seeded a portion of these cells in selection media to analyze the proliferation of epithelial cells. The stem cells precursors of keratinocytes were identified through specific markers. The expression of these markers was evaluated by immunofluorescence and reverse transcription polymerase chain reaction (PCR). RESULTS: The stem cells demonstrated 90% confluence, after undergoing proliferation in the selection medium for 15 days. Most of these cells tested positive for the keratinocyte-specific markers, but negative for stem cell specific markers. Of note, the identity of the keratinocytes was well established even after several subcultures. CONCLUSIONS: These results suggested that it is feasible to isolate and expand differentiated cell populations in the amniotic fluid from precursor cells. Furthermore, amniotic membranes can be utilized as scaffolds to grow keratinocytes, which can be potentially exploited in areas of skin ulcer transplantation and tissue engineering interventions.


Subject(s)
Amnion/cytology , Amnion/physiology , Amniotic Fluid/cytology , Amniotic Fluid/physiology , Keratinocytes/physiology , Skin Ulcer/therapy , Adult , Amnion/transplantation , Cell Proliferation/physiology , Cells, Cultured , Embryonic Stem Cells/physiology , Embryonic Stem Cells/transplantation , Female , Humans , Keratinocytes/transplantation , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction
4.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 90-100, 2021 12.
Article in English | MEDLINE | ID: mdl-34890039

ABSTRACT

OBJECTIVE: The aim of the study was to show the effect that two naturally occurring compounds, a cyclodextrin and hydroxytyrosol, can have on the entry of SARS-CoV-2 into human cells. MATERIALS AND METHODS: The PubMed database was searched to retrieve studies published from 2000 to 2020, satisfying the inclusion criteria. The search keywords were: SARS-CoV, SARS-CoV-2, coronavirus, lipid raft, endocytosis, hydroxytyrosol, cyclodextrin. Modeling of alpha-cyclodextrin and hydroxytyrosol were done using UCSF Chimera 1.14. RESULTS: The search results indicated that cyclodextrins can reduce the efficiency of viral endocytosis and that hydroxytyrosol has antiviral properties. Bioinformatic docking studies showed that alpha-cyclodextrin and hydroxytyrosol, alone or in combination, interact with the viral spike protein and its host cell receptor ACE2, thereby potentially influencing the endocytosis process. CONCLUSIONS: Hydroxytyrosol and alpha-cyclodextrin can be useful against the spread of SARS-CoV-2.


Subject(s)
Phenylethyl Alcohol/analogs & derivatives , SARS-CoV-2/physiology , Virus Internalization/drug effects , alpha-Cyclodextrins/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Computational Biology/methods , Humans , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Membrane Microdomains/virology , Molecular Docking Simulation , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , alpha-Cyclodextrins/chemistry , alpha-Cyclodextrins/metabolism , alpha-Cyclodextrins/therapeutic use
5.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 101-107, 2021 12.
Article in English | MEDLINE | ID: mdl-34890040

ABSTRACT

OBJECTIVE: The aim of the study was to show the importance of developing techniques that could exploit the potential of bacteriophages as therapeutics or food supplements. MATERIALS AND METHODS: PubMed database was searched using the following combination of keywords: (bacteriophage) AND (human therapy); (natural bacteriophage) AND (application). RESULTS: The increasing antibiotic resistance of many bacterial strains is making standard antibiotic treatments less effective. Phage therapy provides a non-antibiotic alternative with greater specificity and without harmful effects on the human microbiota. Phages target their specific bacteria, replicate, and then, destroy the host pathogen. Bacteriophages may be administered by several routes, including topical, oral and intravenous. They not only destroy the host pathogen but, in some cases, increase the sensitivity of host bacteria to antibiotics. Various studies have shown that combining phage therapy and antibiotic treatment can be effective against bacterial infections. Clinical trials of phage therapy have shown promising results for various human diseases and conditions. With advances in genetic engineering and molecular techniques, bacteriophages will be able to target a wide range of bacteria. CONCLUSIONS: In the future, phage therapy promises to become an effective therapeutic option for bacterial infections. Since many potentially beneficial bacteriophages can be found in food, supplements containing bacteriophages could be designed to remodel gut microbiota and eliminate pathogenic bacteria. Remodeling of gut microbiota could correct gut dysbiosis. The order of phages known to have these promising activities is Caudovirales, especially the families Siphoviridae and Myoviridae.


Subject(s)
Bacterial Infections/therapy , Bacteriophages , Phage Therapy/methods , Bacterial Infections/physiopathology , Bacterial Infections/virology , Bacteriophages/isolation & purification , Bacteriophages/physiology , Culture Techniques/methods , Culture Techniques/trends , Dysbiosis/physiopathology , Dysbiosis/therapy , Dysbiosis/virology , Gastrointestinal Microbiome/physiology , Humans , Phage Therapy/trends
6.
Eur Rev Med Pharmacol Sci ; 25(5): 2390-2402, 2021 03.
Article in English | MEDLINE | ID: mdl-33755975

ABSTRACT

OBJECTIVE: Inositol is a carbocyclic sugar polyalcohol. By epimerization of its hydroxyl groups, nine possible stereoisomers can be generated, two of major physiological and clinical relevance: myo-inositol and D-chiro-inositol. Myo-inositol and D-chiro-inositol are normally stored in kidney, brain and liver and are necessary for functions, such as signal transduction, metabolic flux, insulin signaling, regulation of ion-channel permeability, stress response and embryo development. In this narrative review, we summarize the mechanisms by which myo-inositol and D-chiro-inositol can be synthesized and absorbed and their possible role in the etiopathogenesis of neural tube defects. MATERIALS AND METHODS: We performed an online search in the PubMed database using the following keywords: "inositol", "D-chiro-inositol", "myo-inositol", "neural tube defects and inositol". RESULTS: Inositol requirements are partly met by dietary intake, while the rest is synthesized endogenously. Inositol deficiency may be involved in the pathogenesis of diseases, such as metabolic syndrome, spina bifida (a neural tube defect), polycystic ovary syndrome and diabetes. Supplementation of the two inositol stereoisomers, D-chiro-inositol and myo-inositol is important to prevent these conditions. CONCLUSIONS: Inositol is fundamental for signal transduction in the brain, kidneys, reproductive organs and other tissues in response to neurotransmitters, hormones and growth factors. Various genes are involved in inositol metabolism and associated pathways. Altered inositol concentrations are observed in several diseases. Analysis of the genes involved in inositol metabolism may provide important information for the clinical management of these conditions.


Subject(s)
Inositol/metabolism , Animals , Humans , Inositol/chemistry , Inositol/genetics , Molecular Conformation
7.
Diabet Med ; 33(8): 1112-7, 2016 08.
Article in English | MEDLINE | ID: mdl-26499911

ABSTRACT

AIM: The burden of Type 2 diabetes is alarmingly high in South Asia, a region that has many genetically diverse ethnic populations. Genome-wide association studies (GWAS) conducted largely in European populations have identified a number of loci predisposing to Type 2 diabetes risk, however, the relevance of such genetic loci in many South Asian sub-ethnicities remains elusive. The aim of this study was to replicate 49 single nucleotide polymorphisms (SNPs) previously identified through GWAS in Punjabis living in Pakistan. METHODS: We examined the association of 49 SNPs in 853 Type 2 diabetes cases and 1945 controls using additive logistic regression models after adjusting for age and gender. RESULTS: Of the 49 SNPs investigated, eight showed a nominal association (P < 0.05) that also remained significant after controlling for the false discovery rate. The most significant association was found for rs7903146 at the TCF7L2 locus. For a per unit increase in the risk score comprising of all the 49 SNPs, the odds ratio in association with Type 2 diabetes risk was 1.16 (95% CI 1.13-1.19, P < 2.0E-16). CONCLUSION: These results suggest that some Type 2 diabetes susceptibility loci are shared between Europeans and Punjabis living in Pakistan.


Subject(s)
Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Adult , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Pakistan , Polymorphism, Single Nucleotide , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...