Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cell Biol ; 95(9): 311-22, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27320195

ABSTRACT

Germline-specific RNA helicase Spindle-E (Spn-E) is known to be essential for piRNA silencing in Drosophila that takes place mainly in the perinuclear nuage granules. Loss-of-function spn-E mutations lead to tandem Stellate genes derepression in the testes and retrotransposon mobilization in the ovaries. However, Spn-E functions in the piRNA pathway are still obscure. Analysis of total library of short RNAs from the testes of spn-E heterozygous flies revealed the presence of abundant piRNA ping-pong pairs originating from Su(Ste) transcripts. The abundance of these ping-pong pairs were sharply reduced in the library from the testes of spn-E mutants. Thus we found that ping-pong mechanism contributed to Su(Ste) piRNA generation in the testes. The lack of Spn-E caused a significant drop of protein levels of key ping-pong participants, Aubergine (Aub) and AGO3 proteins of PIWI subfamily, in the germline of both males and females, but did not disrupt of their assembly in nuage granules. We found that observed decline of the protein expression was not caused by suppression of aub and ago3 transcription as well as total transcription, indicating possible contribution of Spn-E to post-transcriptional regulation.


Subject(s)
Adenosine Triphosphatases/metabolism , Argonaute Proteins/metabolism , Drosophila Proteins/metabolism , Peptide Initiation Factors/metabolism , RNA Helicases/metabolism , RNA, Small Interfering/genetics , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Animals , Argonaute Proteins/genetics , Base Sequence , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Male , Peptide Initiation Factors/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Helicases/genetics , RNA, Small Interfering/metabolism
2.
Biochim Biophys Acta ; 1863(6 Pt A): 1093-105, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26876306

ABSTRACT

The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Germ Cells/metabolism , RNA Helicases/metabolism , Stem Cells/metabolism , Animals , Animals, Genetically Modified , Apoptosis/genetics , Blotting, Western , Cell Division/genetics , Cyclin A/genetics , Cyclin A/metabolism , Cyclin B/genetics , Cyclin B/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Female , Male , Microscopy, Confocal , Mutation , RNA Helicases/genetics , RNA Interference , Testis/cytology , Testis/metabolism
3.
Anal Biochem ; 436(1): 55-64, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23357237

ABSTRACT

Drosophila testes are generally considered a useful model for studying the fundamental developmental processes of heterogametic organisms. However, immunostaining of the whole Drosophila testis is often associated with insufficient resolution at the subcellular level, poor reproducibility, and incomplete staining of fixed preparations. The main problem for adequate staining is poor permeability of the organs for antibodies and antibody-coupled fluorophores. To overcome this problem we developed a protocol for whole-mount testis immunostaining yielding high-quality preparations for confocal microscopy. Many subcellular structures can be successfully resolved, such as the spectrosome, fusome, nuage granules, apoptotic bodies, and protein crystals. This method preserves the inner architecture of the testes, enabling 3D image reconstruction from a set of confocal sections. It allows one to combine the simultaneous detection of fluorescently tagged and immunostained proteins as well as TUNEL analysis for apoptosis detection.


Subject(s)
Color , Drosophila melanogaster/cytology , Optical Imaging , Spermatogenesis , Testis/cytology , Animals , Immunohistochemistry , Male , Microscopy, Confocal
4.
Commun Integr Biol ; 5(2): 130-3, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22808315

ABSTRACT

Ribonucleoprotein-containing granules in the cytoplasm of germinal cells are known to be a common attribute of eukaryotic organisms. Germ granules appear to ensure the posttranscriptional regulation of germline mRNAs. Recent studies specify the participation of the germ granules in genome integrity maintenance by mechanisms involving short piRNAs. PIWI clade proteins and associated piRNAs are considered as key participants of the germline-specific piRNA pathway. Proteins of the PIWI clade, Aub and AGO3, concentrated in the germline-specific perinuclear granules called nuage, are involved in silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. In Drosophila testes, two types of perinuclear nuage granules are found: a large amount of small particles around the nuclei and significantly larger structures, the piNG-bodies. In this mini-review, we analyze the recent published data about structure and functions of Drosophila male germ granules, and especially their involvement in the piRNA silencing pathway.

5.
Gene ; 499(1): 143-53, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22425977

ABSTRACT

Testis-specific tandemly repeated Stellate genes are part of the Ste-Su(Ste) genetic system required for male fertility in Drosophila melanogaster. Stellate genes encode a functional homolog of the ß-subunit of protein kinase CK2. Derepression of Stellate results in their over-expression, meiotic disturbances and male sterility. Stellate genes are represented by clustered copies in the X chromosome and carry promoters shared with another X-chromosome cluster, ßNACtes genes, encoding putative ß-subunits of the nascent polypeptide-associated complex. Using Electrophoretic Mobility Shift Assay, we revealed in the Stellate promoter three cis-acting elements, E-boxes, the loss of which greatly diminished the reporter gene expression in Drosophila testes. We identified that these E-boxes were recognized by helix-loop-helix protein, dUSF (Drosophila ortholog of mammalian USF) in testis nuclear extract. All three E-boxes were preserved in the promoters of both euchromatic and heterochromatic Stellate clusters. Two analogous E-boxes were detected in the promoters of 5'-copies of the duplicated ßNACtes gene pairs, whereas the 3'-copies lacked these sites but possessed a new binding site for a testis protein distinct from dUSF. Here we characterized a new type of testis-specific core promoter and identified dUSF as its interacting transcription factor.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Promoter Regions, Genetic/physiology , Protein Kinases/genetics , Testis/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Models, Biological , Molecular Sequence Data , Multigene Family/genetics , Organ Specificity/genetics , Promoter Regions, Genetic/genetics , Protein Kinases/metabolism , Upstream Stimulatory Factors/metabolism
6.
Mol Biol Cell ; 22(18): 3410-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21775629

ABSTRACT

Proteins of the PIWI subfamily Aub and AGO3 associated with the germline-specific perinuclear granules (nuage) are involved in the silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. PIWI proteins and their 25- to 30-nt PIWI-interacting RNA (piRNAs) are considered as key participants of the piRNA pathway. Using immunostaining, we found a large, nuage-associated organelle in the testes, the piNG-body (piRNA nuage giant body), which was significantly more massive than an ordinary nuage granule. This body contains known ovarian nuage proteins, including Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1, the key component of the microRNA pathway. piNG-bodies emerge at the primary spermatocyte stage of spermatogenesis during the period of active transcription. Aub, Vasa, and Tud are located at the periphery of the piNG-body, whereas AGO3 is found in its core. Mutational analysis revealed that Vasa, Aub, and AGO3 were crucial for both the maintenance of the piNG-body structure and the silencing of selfish Stellate repeats. The piNG-body destruction caused by csul mutations that abolish specific posttranslational symmetrical arginine methylation of PIWI proteins is accompanied by strong derepression of Stellate genes known to be silenced via the piRNA pathway.


Subject(s)
Drosophila melanogaster/genetics , Germ Cells/metabolism , Organelles/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Amino Acid Substitution , Animals , Arginine/metabolism , Argonaute Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Genes, Insect , Male , Meiotic Prophase I , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Organelle Size , Peptide Initiation Factors/metabolism , Protein Methyltransferases/genetics , Protein Methyltransferases/metabolism , Protein Processing, Post-Translational , Protein Transport , Protein-Arginine N-Methyltransferases , RNA, Small Interfering/genetics , Testis/cytology , Testis/metabolism
7.
J Mol Biol ; 389(5): 895-906, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19422836

ABSTRACT

SUMMARY: The X-chromosome-linked clusters of the tandemly repeated testis-specific Stellate genes of Drosophila melanogaster, encoding proteins homologous to the regulatory beta-subunit of the protein kinase casein kinase 2 (CK2), are repressed in wild-type males. Derepression of Stellate genes in the absence of the Y chromosome or Y-linked crystal locus (crystal line) causes accumulation of abundant protein crystals in testes and different meiotic abnormalities, which lead to partial or complete male sterility. To understand the cause of abnormalities in chromosome behavior owing to Stellate overexpression, we studied subcellular localization of Stellate proteins by biochemical fractionation and immunostaining of whole testes. We showed that, apart from the known accumulation of Stellate in crystalline form, soluble Stellate was located exclusively in the nucleoplasm, whereas Stellate crystals were located mainly in the cytoplasm. Coimmunoprecipitation experiments revealed that the alpha-subunit of the protein kinase CK2 (CK2alpha) was associated with soluble Stellate. Interaction between soluble Stellate and CK2alpha in the nucleus could lead to modulations in the phosphorylation of nuclear targets of CK2 and abnormalities in the meiotic segregation of chromosomes. We also observed that Stellate underwent lysine methylation and mimicked trimethyl-H3K9 epigenetic modification of histone H3 tail.


Subject(s)
Casein Kinase II/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Insect Proteins/metabolism , Protein Interaction Mapping , Protein Kinases/metabolism , Spermatocytes/metabolism , Animals , Catalytic Domain , Cell Fractionation , Cell Nucleus/chemistry , Immunoprecipitation , Lysine/metabolism , Male , Methylation , Microscopy, Fluorescence , Protein Binding
8.
Nucleic Acids Res ; 37(10): 3254-63, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19321499

ABSTRACT

Silencing of Stellate genes in Drosophila melanogaster testes is caused by antisense piRNAs produced as a result of transcription of homologous Suppressor of Stellate (Su(Ste)) repeats. Mechanism of piRNA-dependent Stellate repression remains poorly understood. Here, we show that deletion of Su(Ste) suppressors causes accumulation of spliced, but not nonspliced Stellate transcripts both in the nucleus and cytoplasm, revealing post-transcriptional degradation of Stellate RNA as the predominant mechanism of silencing. We found a significant amount of Su(Ste) piRNAs and piRNA-interacting protein Aubergine (Aub) in the nuclear fraction. Immunostaining of isolated nuclei revealed co-localization of a portion of cellular Aub with the nuclear lamina. We suggest that the piRNA-Aub complex is potentially able to perform Stellate silencing in the cell nucleus. Also, we revealed that the level of the Stellate protein in Su(Ste)-deficient testes is increased much more dramatically than the Stellate mRNA level. Similarly, Su(Ste) repeats deletion exerts an insignificant effect on mRNA abundance of the Ste-lacZ reporter, but causes a drastic increase of beta-gal activity. In cell culture, exogenous Su(Ste) dsRNA dramatically decreases beta-gal activity of hsp70-Ste-lacZ construct, but not its mRNA level. We suggest that piRNAs, similarly to siRNAs, degrade only unmasked transcripts, which are accessible for translation.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Protein Kinases/genetics , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins/genetics , Testis/metabolism , Animals , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Male , Protein Kinases/metabolism , RNA, Messenger/metabolism , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...