Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 03 30.
Article in English | MEDLINE | ID: mdl-33781384

ABSTRACT

Male infertility is a prevalent condition, affecting 5-10% of men. So far, few genetic factors have been described as contributors to spermatogenic failure. Here, we report the first re-sequencing study of the Y-chromosomal Azoospermia Factor c (AZFc) region, combined with gene dosage analysis of the multicopy DAZ, BPY2, and CDYgenes and Y-haplogroup determination. In analysing 2324 Estonian men, we uncovered a novel structural variant as a high-penetrance risk factor for male infertility. The Y lineage R1a1-M458, reported at >20% frequency in several European populations, carries a fixed ~1.6 Mb r2/r3 inversion, destabilizing the AZFc region and predisposing to large recurrent microdeletions. Such complex rearrangements were significantly enriched among severe oligozoospermia cases. The carrier vs non-carrier risk for spermatogenic failure was increased 8.6-fold (p=6.0×10-4). This finding contributes to improved molecular diagnostics and clinical management of infertility. Carrier identification at young age will facilitate timely counselling and reproductive decision-making.


Subject(s)
Azoospermia/genetics , Chromosome Inversion/genetics , Gene Deletion , Spermatogenesis/genetics , Adolescent , Adult , Azoospermia/epidemiology , Estonia , Humans , Male , Middle Aged , Young Adult
2.
Hum Mol Genet ; 28(16): 2785-2798, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31108506

ABSTRACT

Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.


Subject(s)
Chromosomes, Human, Y , DNA Copy Number Variations , Evolution, Molecular , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Comparative Genomic Hybridization , Genome, Human , Genomics/methods , Humans , In Situ Hybridization, Fluorescence , Male , Multigene Family , Mutation , Phylogeny , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...