Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol X ; 8: 100091, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37416832

ABSTRACT

Podisus maculiventris thanatin has been reported as a potent antimicrobial peptide with antibacterial and antifungal activity. Its antibiotic activity has been most thoroughly characterized against E. coli and shown to interfere with multiple pathways, such as the lipopolysaccharide transport (LPT) pathway comprised of seven different Lpt proteins. Thanatin binds to E. coli LptA and LptD, thus disrupting the LPT complex formation and inhibiting cell wall synthesis and microbial growth. Here, we performed a genomic database search to uncover novel thanatin orthologs, characterized their binding to E. coli LptA using bio-layer interferometry, and assessed their antimicrobial activity against E. coli. We found that thanatins from Chinavia ubica and Murgantia histrionica bound tighter (by 3.6- and 2.2-fold respectively) to LptA and exhibited more potent antibiotic activity (by 2.1- and 2.8-fold respectively) than the canonical thanatin from P. maculiventris. We crystallized and determined the LptA-bound complex structures of thanatins from C. ubica (1.90 Å resolution), M. histrionica (1.80 Å resolution), and P. maculiventris (2.43 Å resolution) to better understand their mechanism of action. Our structural analysis revealed that residues A10 and I21 in C. ubica and M. histrionica thanatin are important for improving the binding interface with LptA, thus overall improving the potency of thanatin against E. coli. We also designed a stapled variant of thanatin that removes the need for a disulfide bond but retains the ability to bind LptA and antibiotic activity. Our discovery presents a library of novel thanatin sequences to serve as starting scaffolds for designing more potent antimicrobial therapeutics.

2.
iScience ; 3: 264-278, 2018 May 25.
Article in English | MEDLINE | ID: mdl-30428326

ABSTRACT

Adhesion G-protein-coupled receptors (aGPCRs) play critical roles in diverse cellular processes in neurobiology, development, immunity, and numerous diseases. The lack of molecular understanding of their activation mechanisms, especially with regard to the transmembrane domains, hampers further studies to facilitate aGPCR-targeted drug development. Latrophilin-1/ADGRL1 is a model aGPCR that regulates synapse formation and embryogenesis, and its mutations are associated with cancer and attention-deficit/hyperactivity disorder. Here, we established functional assays to monitor latrophilin-1 function and showed the activation of latrophilin-1 by its endogenous agonist peptide. Via a comprehensive mutagenesis screen, we identified transmembrane domain residues essential for latrophilin-1 basal activity and for agonist peptide response. Strikingly, a cancer-associated mutation exhibited increased basal activity and failed to rescue the embryonic developmental phenotype in transgenic worms. These results provide a mechanistic foundation for future aGPCR-targeted drug design.

3.
Cell ; 173(3): 735-748.e15, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677516

ABSTRACT

Teneurins (TENs) are cell-surface adhesion proteins with critical roles in tissue development and axon guidance. Here, we report the 3.1-Å cryoelectron microscopy structure of the human TEN2 extracellular region (ECR), revealing a striking similarity to bacterial Tc-toxins. The ECR includes a large ß barrel that partially encapsulates a C-terminal domain, which emerges to the solvent through an opening in the mid-barrel region. An immunoglobulin (Ig)-like domain seals the bottom of the barrel while a ß propeller is attached in a perpendicular orientation. We further show that an alternatively spliced region within the ß propeller acts as a switch to regulate trans-cellular adhesion of TEN2 to latrophilin (LPHN), a transmembrane receptor known to mediate critical functions in the central nervous system. One splice variant activates trans-cellular signaling in a LPHN-dependent manner, whereas the other induces inhibitory postsynaptic differentiation. These results highlight the unusual structural organization of TENs giving rise to their multifarious functions.


Subject(s)
Bacterial Toxins/chemistry , Membrane Proteins/chemistry , Nerve Tissue Proteins/chemistry , Synapses/metabolism , Alternative Splicing , Amino Acid Motifs , Animals , Axons , Cell Adhesion , Cell Line , Cyclic AMP/metabolism , Female , HEK293 Cells , Hormones/chemistry , Humans , Insecta , Membrane Proteins/metabolism , Mice , Molecular Conformation , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neuropeptides/chemistry , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/chemistry , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...