Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 76(4): 779-86, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19452559

ABSTRACT

Microbial degradation of phenylacetic acid proceeds via the hybrid pathway that includes formation of a coenzyme A thioester, ring hydroxylation, non-oxygenolytic ring opening, and beta-oxidation-like reactions. A phenylacetic acid degradation protein PaaG is a member of the crotonase superfamily, and is a candidate non-oxygenolytic ring-opening enzyme. The crystal structure of PaaG from Thermus thermophilus HB8 was determined at a resolution of 1.85 A. PaaG consists of three identical subunits related by local three-fold symmetry. The monomer is comprised of a spiral and a helical domain with a fold characteristic of the crotonase superfamily. A putative active site residue, Asp136, is situated in an active site cavity and surrounded by several hydrophobic and hydrophilic residues. The active site cavity is sufficiently large to accommodate a ring substrate. Two conformations are observed for helix H2 located adjacent to the active site. Helix H2 is kinked at Asn81 in two subunits, whereas it is kinked at Leu77 in the other subunit, and the side chain of Tyr80 is closer to Asp136. This indicates that catalytic reaction of PaaG may proceed with large conformational changes at the active site. Asp136 is the only conserved polar residue in the active site. It is located at the same position as those of 4-chlorobenzoyl-CoA dehalogenase and peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase, indicating that PaaG may undergo isomerization or a ring-opening reaction via a Delta(3),Delta(2)-enoyl-CoA isomerase-like mechanism.


Subject(s)
Bacterial Proteins/chemistry , Crystallography, X-Ray , Enoyl-CoA Hydratase/chemistry , Thermus thermophilus/chemistry , Amino Acid Sequence , Catalytic Domain , Enoyl-CoA Hydratase/metabolism , Models, Molecular , Molecular Sequence Data , Phenylacetates/metabolism , Protein Conformation , Sequence Alignment
2.
Biomacromolecules ; 6(4): 2126-30, 2005.
Article in English | MEDLINE | ID: mdl-16004454

ABSTRACT

In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants.


Subject(s)
Acyltransferases/metabolism , Aeromonas/enzymology , Arabidopsis/metabolism , Mutation , Polyesters/metabolism , Acyltransferases/genetics , Arabidopsis/genetics , Gas Chromatography-Mass Spectrometry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plasmids
3.
Biomacromolecules ; 3(5): 1071-7, 2002.
Article in English | MEDLINE | ID: mdl-12217055

ABSTRACT

The comonomer-unit compositional distributions have been investigated for bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HH)] samples with 3HH unit content of 13.8, 18.0, 22.0, and 54.0 mol %. They were comonomer compositionally fractionated using chloroform/n-heptane mixed solvent at ambient temperature. The fractionation of P(3HB-co-18.0 mol %3HH) and P(3HB-co-22.0 mol % 3HH), which could not be carried out effectively at room temperature, were refractionated at 70 degrees C in the mixed solvent. Fractions with different 3HH unit content in a wide range (from 4.4 to 80.7 mol %) were obtained. By use of these fractions with narrow compositional distribution, the comonomer composition dependence of thermal properties was investigated by differential scanning calorimetry. The melting point (T(m)) and heat of fusion (DeltaH) decreased as the 3HH unit content increased in the range of low 3HH content (<40 mol %), while they increased as the 3HH unit content increased in the high 3HH content range (>70 mol %). The minimum T(m) and DeltaH values were found to exist at 3HH unit content of about 60 mol %. The glass transition temperature (T(g)) decreased linearly with the increase of 3HH unit content. The values of T(m), DeltaH, and T(g) of P(3HB-co-3HH)s were compared with those of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and the effects of comonomer types on the thermal properties were revealed.


Subject(s)
3-Hydroxybutyric Acid/chemistry , Caproates/chemistry , 3-Hydroxybutyric Acid/isolation & purification , Bacteria/chemistry , Calorimetry, Differential Scanning , Caproates/isolation & purification , Chemical Fractionation , Temperature , Thermodynamics
4.
Appl Environ Microbiol ; 68(5): 2411-9, 2002 May.
Article in English | MEDLINE | ID: mdl-11976116

ABSTRACT

By in vitro evolution experiment, we have first succeeded in acquiring higher active mutants of a synthase that is a key enzyme essential for bacterial synthesis of biodegradable polyester, polyhydroxyalkanoate (PHA). Aeromonas caviae FA440 synthase, termed PhaC(Ac), was chosen as a good target for evolution, since it can synthesize a PHA random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] that is a tough and flexible material compared to polyhydroxybutyrate (PHB) homopolyester. The in vitro enzyme evolution system consists of PCR-mediated random mutagenesis targeted to a limited region of the phaC(Ac) gene and screening mutant enzymes with higher activities based on two types of polyester accumulation system by using Escherichia coli for the synthesis of PHB (by JM109 strain) (S. Taguchi, A. Maehara, K. Takase, M. Nakahara, H. Nakamura, and Y. Doi, FEMS Microbiol. Lett. 198:65-71, 2001) and of P(3HB-co-3HHx) [by LS5218 [fadR601 atoC(Con)] strain]. The expression vector for the phaC(Ac) gene, together with monomer-supplying enzyme genes, was designed to synthesize PHB homopolyester from glucose and P(3HB-co-3HHx) copolyester from dodecanoate. Two evolved mutant enzymes, termed E2-50 and T3-11, screened through the evolution system exhibited 56 and 21% increases in activity toward 3HB-coenzyme A, respectively, and consequently led to enhanced accumulation (up to 6.5-fold content) of P(3HB-co-3HHx) in the recombinant LS5218 strains. Two single mutations in the mutants, N149S for E2-50 and D171G for T3-11, occurred at positions that are not highly conserved among the PHA synthase family. It should be noted that increases in the 3HHx fraction (up to 16 to 18 mol%) were observed for both mutants compared to the wild type (10 mol%).


Subject(s)
Acyltransferases/metabolism , Aeromonas/enzymology , Polyesters/metabolism , Aeromonas/metabolism , Biological Evolution , Coenzyme A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...