Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687447

ABSTRACT

In the current investigation, the removal efficiency regarding a cationic dye, methylene blue (MB), from three graphene-based materials was investigated. The materials' characterization process involved instrumental methods such as XRD, XPS, SEM, TEM, FTIR, and nitrogen adsorption at 77 K. The survey examined how various process factors influenced the ability of the studied materials to adsorb cationic dyes. These parameters encompassed contact time, initial dye concentrations, solution pH, and temperature. The adsorption procedure was effectively explained through the application of pseudo-second-order and Langmuir models. The maximum adsorption capacity for the best adsorbent at 293 K was found to be 49.4 mg g-1. In addition, the study also determined the entropy, enthalpy, and Gibbs free energy values associated with the removal of MB and showed that the adsorption of MB is endothermic, feasible, and spontaneous. The results also revealed that the studied materials are suitable adsorbents for the removal of cationic dyes.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745432

ABSTRACT

In the present study, we report on the facile prepared nanocomposites of reduced graphene oxide RGO with Cu and Ag. The synthesis was performed through an environmentally friendly and easy method by simultaneous reduction in solutions containing Cu2+ or Ag+ and graphene oxide (GO) using zinc powder as a reducing agent in aqueous acidic media. The composites are characterized by powder X-ray diffraction, low-temperature nitrogen adsorption, X-ray photoelectron and FTIR and Raman spectroscopies, as well as Scanning and Transmission electron microscopies. The antibacterial activity of the composites was tested for Staphylococcus aureus, Escherichia coli and antifungal activity for Candida albicans. The cytotoxicity of the materials was studied towards two types of eukaryotic cells-MDCK II and A549 cell lines. The composites obtained consist of homogeneously distributed Cu and Ag nanoparticles on the surface of graphene sheets and manifest good antimicrobial activity and high cytotoxicity. The results clearly show that both metal-RGO composites can be successfully used as antimicrobial and anticancer agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...