Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36354512

ABSTRACT

(1) Abdominal aortic aneurysm (AAA) biomechanics-based metrics often reported may be over/under-estimated by including non-aneurysmal regions in the analyses, which is typical, rather than isolating the dilated sac region. We demonstrate the utility of a novel sac-isolation algorithm by comparing peak/mean wall stress (PWS, MWS), with/without sac isolation, for AAA that were categorized as stable or unstable in 245 patient CT image sets. (2) 245 patient computed tomography images were collected, segmented, meshed, and had subsequent finite element analysis performed in preparation of our novel sac isolation technique. Sac isolation was initiated by rotating 3D surfaces incrementally, extracting 2D projections, curve fitting a Fourier series, and taking the local extrema as superior/inferior boundaries for the aneurysmal sac. The PWS/MWS were compared pairwise using the entire aneurysm and the isolated sac alone. (3) MWS, not PWS, was significantly different between the sac alone and the entire aneurysm. We found no statistically significant difference in wall stress measures between stable (n = 222) and unstable (n = 23) groups using the entire aneurysm. However, using sac-isolation, PWS (24.6 ± 7.06 vs. 20.5 ± 8.04 N/cm2; p = 0.003) and MWS (12.0 ± 3.63 vs. 10.5 ± 4.11 N/cm2; p = 0.022) were both significantly higher in unstable vs. stable groups. (4) Our results suggest that evaluating only the AAA sac can influence wall stress metrics and may reveal differences in stable and unstable groups of aneurysms that may not otherwise be detected when the entire aneurysm is used.

2.
J Thorac Cardiovasc Surg ; 158(2): 355-363, 2019 08.
Article in English | MEDLINE | ID: mdl-30551966

ABSTRACT

OBJECTIVE: To assess ascending aortic distensibility and build geometry and distensibility-based patient-specific stress distribution maps in patients sustaining type A aortic dissection (TAAD) using predissection noninvasive imaging. METHODS: Review of charts from patients undergoing surgical repair of TAAD (n = 351) led to the selection of a subset population (n = 7) with 2 or more predissection computed tomography angiography scans and echocardiograms at least 1 year before dissection. Ascending aortic wall biomechanical properties (aortic strain, distensibility, and stiffness) were compared with age- and size-matched nondissected nonaneurysmal controls. Patient-specific aortic strain served as an input in aortic geometry-based simulated 3-dimensional reconstructions to generate longitudinal and circumferential wall stress maps. Inspection of perioperative dissection scans and intraoperative visual examination confirmed primary tear locations. RESULTS: Predissection echocardiography revealed ascending aortas of patients sustaining TAAD to exhibit decreased aortic wall strain (14.50 ± 1.13% vs 8.49 ± 1.08%; P < .01), decreased distensibility (4.26 ± 0.44 vs 2.39 ± 0.33 10-6 cm2·dyne-1; P < .01), increased stiffness (3.84 ± 0.24 vs 7.48 ± 1.05; P < .001), and increased longitudinal wall stress (246 ± 22 vs 172 ± 37 kPa; P < .01). There was no significant difference in circumferential wall stress. Predissection computed tomography angiography models revealed overlap between regions of increased longitudinal wall stress and primary tear sites. CONCLUSIONS: Using predissection imaging, we identified increased stiffness and longitudinal wall stress in ascending aortas of patients with dissection. Patient-specific imaging-derived biomechanical property maps like these may be instrumental toward designing better prediction models of aortic dissection potential.


Subject(s)
Aorta/pathology , Aortic Dissection/etiology , Vascular Stiffness , Aorta/physiopathology , Computed Tomography Angiography , Echocardiography , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...