Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32559, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961976

ABSTRACT

In a field study, the impact of different levels of brewery sludge (BS) enrichment on Triticum aestivum L. (wheat plants) was examined in terms of growth, yield, heavy metal absorption, and potential health risks linked to plant consumption. Using a randomized complete block design with seven treatments and three blocks, the study showed that applying up to 12 t ha-1 brewery sludge significantly improved all agronomic parameters (except harvest index) compared to control and mineral-fertilized soil. Heavy metal translocation was generally low, except for Cu and Pb. The sequence of heavy metal translocation was Cu > Pb > Cd > Ni > Zn > Mn > Cr from soil to spikes and Cu > Zn > Mn > Pb > Ni > Cd > Cr from soil to grain. Heavy metal loads were mostly higher in roots than in the above-ground crop parts. The target hazard quotient (THQ), hazard index (HI), and target cancer risk (TCR) within wheat grain remained within safe limits for all BS treatments. Consequently, consuming this wheat grain is considered safe regarding heavy metals. Thus, utilizing brewery sludge at 12 t ha-1 as a fertilizer for wheat production and as an alternative method for sludge disposal is plausible.

2.
Heliyon ; 7(1): e05989, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33511296

ABSTRACT

Brewery sludge is the solid residue obtained from agro-industrial processing. It is possible to utilize the waste products in an environment friendly and economical way to replace mineral fertilizer due to its sufficient macronutrients and organic carbon content. However, its use is limited due to heavy metal concentration that may contaminate crops and then the food chain. The objective of this study was to assess the suitability of brewery sludge for using to grow bread wheat (Triticum aestivum L.) by determining the effect of brewery sludge (7 levels: 0, 3, 6, 9, 12 and 15 t ha-1, and 1 recommended rate of NPS only) on soil chemical properties, bioaccumulation factor, and heavy metal absorption in the soil and in the bread wheat grain using a Randomized Blocks Design field experiment conducted at two sites during the 2018 cropping season. Amendment of brewery sludge at a rate of 15 t ha-1 led to substantial variations in soil chemical properties except for Mg2+ content at both study sites. Concentrations of the studied heavy metals (except Zn in the soil) increased with increasing brewery sludge application rate in the soil and in the wheat grain. However, heavy metal uptake by wheat grain and heavy metal concentration in the soil were below the allowed limits. The bioaccumulation factor in the wheat grain was <1.0 for the studied heavy metals. The findings of the study suggest that brewery sludge at a rate of 15 t ha-1 could be recommended due to its high nourishing effect for soil and for promoting nutritional quality of wheat crop and is safe for human consumption. However, since sludge application may lead to increase in the amount of trace metals in the soil-plant system, a long-term study is recommended.

3.
Acta Biomater ; 6(11): 4249-60, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20601232

ABSTRACT

Calcification currently represents a major cause of failure of biological tissue heart valves. It is a complex phenomenon influenced by a number of biochemical and mechanical factors. Recent advances in material science offer new polymers with improved properties, potentially suitable for synthetic leaflets heart valves manufacturing. In this study, the calcification-resistance efficacy and mechanical and surface properties of a new nanocomposite polymeric material (polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU) which has been developed by our group are assessed by means of in vitro testing. In particular, thin sheets of nanocomposite, glutaraldehyde-fixed bovine pericardium (BP) and polyurethane (PU) were exposed to a calcium solution into a specially designed in vitro accelerated physiological pulsatile pressure system for a period of 31days and a total of 4×10(7) cycles. The samples were investigated for signs of calcification after exposure to calcium solution by means of X-ray, microscopic and chemical inspections. Mechanical and surface properties were also studied using stress-strain behaviour and surface morphology and hydrophobicity. Comparison shows that, in the experimental conditions, the level of calcification for the nanocomposite is considerably lower than for the fixed BP (p=0.008) and PU samples (p=0.015). Also, mechanical properties were unchanged in POSS-PCU, while there was a significant deterioration in PU samples (p<0.05). Hydrophobicity was significantly reduced in both the POSS-PCU and PU samples (p<0.0001). However, the POSS-PCU nanocomposite remained more hydrophobic than the PU sample (p<0.0001). Less platelet adhered to the POSS-PCU compared to the PU (p<0.0001). These results indicate that the use of this nanocomposite in synthetic leaflets heart valves may lead to potential advantages in terms of long-term performances and durability.


Subject(s)
Calcification, Physiologic/drug effects , Heart Valve Prosthesis , Materials Testing/methods , Nanocomposites/chemistry , Organosilicon Compounds/pharmacology , Polymers/pharmacology , Blood Platelets/cytology , Blood Platelets/drug effects , Calcium/metabolism , Calorimetry, Differential Scanning , Cell Adhesion/drug effects , Humans , Microscopy, Confocal , Nanocomposites/ultrastructure , Organosilicon Compounds/chemistry , Polymers/chemistry , Surface Properties/drug effects , Tensile Strength/drug effects , X-Rays
4.
Acta Biomater ; 5(7): 2409-17, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19497802

ABSTRACT

A novel nanocomposite polymer with a polycarbonate soft segment (PCU) and polyhedral oligomeric silsesquioxanes (POSS) nanoparticle (POSS-PCU) has been selected for a synthetic heart valve due to its superior biocompatibility and in vivo biostability. However, the development of synthetic heart valves from polymeric materials requires an understanding of the basic mechanical and surface properties of the polymer. In this study, the mechanical properties of POSS-PCU, including tensile strength, tear strength and hardness, were tested and compared to control (PCU). The surface property was analyzed using contact angle measurement and the resistance to platelet adhesion was also investigated. POSS-PCU (hardness 84+/-0.8 Shore A) demonstrated significantly higher tensile strength 53.6+/-3.4 and 55.9+/-3.9Nmm(-2) at 25 and 37 degrees C, respectively) than PCU (33.8+/-2.1 and 28.8+/-3.4Nmm(-2) at 25 and 37 degrees C, respectively). Tensile strength and elongation at break of POSS-PCU was significantly higher than PCU at both 25 and 37 degrees C (P<0.001). POSS-PCU showed a relatively low Young's modulus (25.9+/-1.9 and 26.2+/-2.0Nmm(-2)) which was significantly greater in comparison with control PCU (9.1+/-0.9 and 8.4+/-0.5Nmm(-2)) at 25 and 37 degrees C, respectively, with 100mum thickness. There was no significant difference (P>0.05) in tear strength between POSS-PCU and PCU at 25 degrees C. However, tear strength increased significantly (P<0.001) (at 37 degrees C) as the thickness increased from 100microm (51.0+/-3.3Nmm(-1)) to 200microm (63+/-1.5Nmm(-1)). The surface of POSS-PCU was significantly less hydrophilic than that of PCU.


Subject(s)
Biocompatible Materials/chemistry , Heart Valve Prosthesis , Nanostructures/chemistry , Nanotechnology/instrumentation , Organosilicon Compounds/chemistry , Platelet Adhesiveness/physiology , Polycarboxylate Cement/chemistry , Cells, Cultured , Elastic Modulus , Humans , Materials Testing , Nanostructures/ultrastructure , Particle Size , Prosthesis Design , Surface Properties , Tensile Strength
5.
Trends Biotechnol ; 27(6): 359-67, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19406497

ABSTRACT

Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.


Subject(s)
Biocompatible Materials , Heart Valve Prosthesis , Materials Testing , Nanostructures , Polymers , Equipment Design , Nanotechnology , Tissue Scaffolds
6.
J Biomed Mater Res B Appl Biomater ; 88(1): 290-303, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18615473

ABSTRACT

Valve replacement is the most common surgical treatment in patients with advanced valvular heart disease. Mechanical and bio-prostheses have been the traditional heart valve replacements in these patients. However, currently the heart valves for replacement therapy are imperfect and subject patients to one or more ongoing risks, including thrombosis, limited durability, and need for re-operations due to the lack of growth in pediatric populations. Furthermore, they require an open heart surgery, which is risky for elderly and young children who are too weak or ill to undergo major surgery. This article reviews the current state of the art of heart valve replacements in light of their potential clinical applications. In recent years polymeric materials have been widely studied as potential prosthetic heart valve material being designed to overcome the clinical problems associated with both mechanical and bio-prosthetic valves. The review also addresses the advances in polymer materials, tissue engineering approaches, and the development of percutaneous valve replacement technology and discusses the future prospects in these fields.


Subject(s)
Heart Valve Prosthesis/trends , Tissue Engineering/trends , Animals , Biocompatible Materials/chemistry , Cardiac Surgical Procedures , Heart Valve Diseases/surgery , Heart Valve Prosthesis Implantation/trends , Heart Valves/pathology , Heart Valves/surgery , Humans , Plastics , Polymers/chemistry , Sheep , Thrombosis , Tissue Engineering/methods
7.
Trends Cardiovasc Med ; 18(4): 117-25, 2008 May.
Article in English | MEDLINE | ID: mdl-18555184

ABSTRACT

Valvular heart disease continues to be an important health care problem. Although surgical valve replacement remains the standard treatment, minimally invasive approaches for valve repair and replacement are becoming attractive alternatives among physicians and patients. In fact, percutaneous procedures can extend treatment to the increasing population of elderly patients with severe comorbidities who cannot withstand the stress of open heart surgery and to the younger patients at the early stage of valve disease, who are not treated until older ages to avoid multiple invasive surgeries. Feasibility of this technique has been shown in the first clinical experiences, and the early results are promising. However, it is clear that percutaneous valve replacement therapy is still at the early stage of development and requires enhanced implantation procedures and substantial design improvements as well as long-term follow-up to show the safety and effectiveness of this new treatment modality.


Subject(s)
Heart Valve Diseases/surgery , Heart Valve Prosthesis Implantation , Animals , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/trends , Humans , Minimally Invasive Surgical Procedures , Prosthesis Design , Treatment Outcome
8.
Biomacromolecules ; 9(1): 129-35, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18095652

ABSTRACT

Plastic compression of hyperhydrated collagen gels produces tissue-like scaffolds of enhanced biomechanical properties. By increasing collagen density, these scaffolds could be developed into highly Biomimetic cell-seeded templates. When utilizing three-dimensional (3-D) scaffold systems for tissue repair, and indeed when investigating the cytocompatibility of two-dimensional (2-D) surfaces, the cell seeding density is often overlooked. In this study, we investigated this potentially critical parameter using MG-63 cells seeded in the dense collagen scaffolds. This is conducted within the overall scope of developing these scaffolds for bone repair. Cell proliferation, osteoblastic differentiation, and matrix remodelling capacity in relation to various seeding densities, ranging from 10(5) to 10(8) cells/ml compressed collagen, were evaluated in vitro. This was performed using the AlamarBlue assay, quantitative polymerase chain reaction (qPCR), and tensile mechanical analysis respectively. Variations in cell seeding density significantly influenced cell proliferation where lower initial seeding density resulted in higher proliferation rates as a function of time in culture. Gene transcription levels for alkaline phosphatase (ALPL), runt-related transcription factor 2 (RUNX2), and osteonectin (SPARC) were also found to be dependent on the cell density. While ALPL transcription was down-regulated with culturing time for all seeding densities, there was an increase in RUNX2 and SPARC transcription, particularly for scaffolds with cell densities in the range 10(6)-10(7) cells/ml collagen. Furthermore, this range of seeding density affected cell capacity in conducting collagenous matrix degradation as established by analyzing matrix metalloproteinase 1 (MMP1) transcription and scaffold mechanical properties. This study has shown that the seeded cell population in the three-dimensional dense collagen scaffolds clearly affected the degree of osteoblastic cell proliferation, differentiation, and some aspects of matrix remodelling activity. The seeding density played a major role in influencing the corresponding cell differentiation and cell-matrix interaction.


Subject(s)
Cell Differentiation , Collagen/chemistry , Molecular Mimicry , Osteoblasts/cytology , Core Binding Factor Alpha 1 Subunit/genetics , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Hydrolysis , Osteoblasts/metabolism , Osteonectin/genetics , Polymerase Chain Reaction , Transcription, Genetic
9.
Biorheology ; 44(4): 265-72, 2007.
Article in English | MEDLINE | ID: mdl-18094450

ABSTRACT

A non-biodegradable polyhedral oligomeric silsesquioxane (POSS) nanocomposite biopolymer has been developed for fabrication of medical devices and for tissue engineering human organs. The polymer in solution, containing 2 wt% of POSS, has been synthesized, characterized and investigated to determine its key rheological properties. Thus, the variation of shear stress and viscosity as a function of shear rate has been determined at ambient temperature to estimate yield stress and the index of pseudoplasticity, respectively. The temperature dependence of viscosity and the effect of ageing on the viscosity of the polymer have also been investigated. Results are compared with those of a conventional polycarbonate urethane (PCU) polymer solution. The POSS-PCU polymer solution shows near-Newtonian behaviour in the shear rate range to 1000 s(-1), having an apparent viscosity of approximately 3000 mPa s and a pseudoplasticity index of 0.90, decreasing slightly as the polymer solution is aged over 9 months. The temperature dependence of viscosity of the POSS polymer is extremely low and does not change with ageing but the yield strength increases from 2.7 Pa to 8.3 Pa.


Subject(s)
Biocompatible Materials/chemistry , Nanocomposites/chemistry , Organosilicon Compounds/chemistry , Rheology , Biopolymers , Chemical Phenomena , Chemistry, Physical , Molecular Weight , Viscosity
10.
Biomacromolecules ; 8(2): 543-51, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17291078

ABSTRACT

A problem with tissue engineering scaffolds is maintaining seeded cell viability and function due to limitations of oxygen and nutrient transfer. An approach to maintain suitable oxygen concentrations throughout the scaffold would be to controllably incorporate microchannelling within these scaffolds. This study investigated the incorporation of unidirectionally aligned soluble phosphate based glass fibers (PGF) into dense collagen scaffolds. PGF are degradable, and their degradation can be controlled through their chemistry and dimensions. Plastic compression was used to produce composite scaffolds at three different weight percentage while maintaining greater than 80% resident cell viability. PGF-collagen scaffold composition was quantified through thermogravimetric analysis as well as being morphologically and mechanically characterized. PGF degradation was measured through ion chromatography, and channel formation was verified with ultrasound imaging and SEM. The free movement of coated microbubble agents confirmed the channels to be continuous in nature and of 30-40 microm diameter. These microchannels in dense native collagen matrices could play an important role in hypoxia/perfusion limitations and also in the transportation of nutrients and potentially forming blood vessels through dense implants.


Subject(s)
Collagen Type I , Glass , Microfluidics/instrumentation , Tissue Engineering/instrumentation , Animals , Cell Survival , Fibroblasts/cytology , Humans , Microfluidics/methods , Phosphates , Rats , Solubility , Tissue Engineering/methods
11.
J Biomed Mater Res A ; 79(3): 606-17, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16826599

ABSTRACT

Gly-Arg-Gly-Asp-Ser (GRGDS) was modified by conjugation to lauric acid (LA) to facilitate incorporation into the matrix of a poly(carbonate-urea)urethane (PCU) used in vascular bypass grafts. GRGDS and LA-GRGDS were synthesized using solid phase Fmoc chemistry and characterized by high performance liquid chromatography and Fourier transform infrared spectroscopy. LA-GRGDS was passively coated and incorporated as nanoparticle dispersion on the PCU films. Biocompatibility of the modified surfaces was investigated. Endothelial cells seeded on LA-GRGDS coated and incorporated PCU showed after 48 h and 72 h a significant (p < 0.05) increase in metabolism compared with unmodified PCU. The platelet adhesion and hemolysis studies showed that the modification of PCU had no adverse effect. In conclusion, LA-conjugated RGD derivatives, such as LA-GRGDS, that permit solubility into solvents used in solvent casting methodologies should have wide applicability in polymer development for use in coronary, vascular, and dialysis bypass grafts, and furthermore scaffolds utilized for tissue regeneration and tissue engineering.


Subject(s)
Cardiovascular Diseases/surgery , Lauric Acids/chemistry , Myocardial Revascularization , Oligopeptides/chemistry , Oligopeptides/pharmacology , Polymers/chemistry , Polyurethanes/chemistry , Blood Platelets/drug effects , Cell Adhesion/drug effects , Cell Shape/drug effects , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/drug effects , Hemolysis/drug effects , Humans , Microscopy, Electron, Scanning , Oligopeptides/toxicity , Solubility , Spectroscopy, Fourier Transform Infrared
12.
Expert Rev Med Devices ; 3(2): 245-61, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16515390

ABSTRACT

To reduce the toxic effects, related clinical problems and complications such as bleeding disorders associated with systemic anticoagulation, it has been hypothesized that by coating the surfaces of medical devices, such as stents, bypass grafts, extracorporeal circuits, guide wires and catheters, there will be a significant reduction in the requirement for systemic anticoagulation or, ideally, it will no longer be necessary. However, current coating processes, even covalent ones, still result in leaching followed by reduced functionality. Alternative anticoagulants and related antiplatelet agents have been used for improvement in terms of reduced restenosis, intimal hyperphasia and device failure. This review focuses on existing heparinization processes, their application in clinical devices and the updated list of alternatives to heparinization in order to obtain a broad overview, it then highlights, in particular, the future possibilities of using heparin and related moieties to tissue engineer scaffolds.


Subject(s)
Anticoagulants/administration & dosage , Biomedical Engineering/instrumentation , Blood Vessel Prosthesis/adverse effects , Drug Delivery Systems/instrumentation , Platelet Aggregation Inhibitors/administration & dosage , Stents/adverse effects , Thrombosis/prevention & control , Coated Materials, Biocompatible/administration & dosage , Drug Delivery Systems/methods , Equipment Design , Equipment Safety , Humans , Thrombosis/etiology
13.
Biomaterials ; 26(32): 6271-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15913770

ABSTRACT

We have recently developed a polymer which contains silsesquioxane in the form of nano-bridges poly(carbonate-silsesquioxane-bridge-urea)urethane (PCBSU) for cardiovascular device applications. The polymer has been characterised and the durability has been confirmed with long-term in vivo tests. The aim of this study was to test the cytocompatibility of the new polymer and to investigate any potential cytotoxic effects. To assess the effect of direct contact with PCBSU sections of polymer material were cut and placed into a 24-well plate. Six discs were seeded with 2 x 10(5) human umbilical vein cells (HUVEC). As a positive control, six wells were seeded with the same number of HUVEC. In a further experiment to assess indirect contact with PCBSU a sample of the polymer was powdered using a Micro-Dismembrator. Cell culture medium was exposed to powdered polymer (1-100 mg/ml) for a period of 7 days. HUVEC seeded as above were then exposed to the treated cell culture medium for 24 and 96 h. Finally, cell proliferation was studied over 16 days by seeding 2 x 10(5) HUVEC on films of PCBSU cast in glass Petri dishes. Cell viability and growth were assessed using Alamar blue, lactate dehydrogenase and Pico green assays and morphology was studied by Toluidine blue staining and scanning electron microscopy. Viable cells were demonstrated to be present after 16 days seeded on PCBSU. Exposing cells to PCBSU-treated cell culture medium resulted in no apparent damage to the cells at concentrations of 1 or 10 mg/ml, and only a slight reduction at 100 mg/ml after 96 h exposure. This study demonstrates that PCBSU can support the growth of endothelial cells for a prolonged period and does not demonstrate any significant toxic effects to cells. Thus it has the potential to be used both as a medical device and as scaffolding in tissue engineering applications.


Subject(s)
Biocompatible Materials/chemistry , Cell Culture Techniques/methods , Endothelial Cells/cytology , Endothelial Cells/physiology , Polyurethanes/chemistry , Urea/analogs & derivatives , Apoptosis/physiology , Cell Proliferation , Cell Size , Cell Survival/physiology , Cells, Cultured , Humans , Materials Testing , Polyurethanes/analysis , Urea/analysis , Urea/chemistry
14.
Biomacromolecules ; 5(3): 798-813, 2004.
Article in English | MEDLINE | ID: mdl-15132664

ABSTRACT

An essential aspect of the treatment of patients with cardiovascular disease is the use of anticoagulant and antiplatelet agents for the prevention of further ischaemic events and vascular death resulting from thrombosis. Aspirin and heparin have been the standard therapy for the management of such conditions to date. Recently, numerous more potent platelet inhibitors together with anticoagulant agents have been developed and tested in randomized clinical trials. This article reviews the current state of the art of antiplatelet and anticoagulant therapy in light of its potential clinical efficacy. It then focuses on the usages of these agents in order to improve the performance of clinical devices such as balloon catheters, coronary stents, and femoropopliteal bypass grafting and extra corporeal circuits for cardiopulmonary bypass. The article then goes on to look at the usage of these agents more specifically heparin, heparan, hirudin, and coumarin in the development of more biocompatible scaffolds for tissue engineering.


Subject(s)
Anticoagulants/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Anticoagulants/chemistry , Platelet Aggregation Inhibitors/chemistry , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...