Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Kidney Int Rep ; 9(5): 1451-1457, 2024 May.
Article in English | MEDLINE | ID: mdl-38707821

ABSTRACT

Introduction: Patients with autosomal dominant tubulointerstitial kidney disease (ADTKD) usually present with nonspecific progressive chronic kidney disease (CKD) with mild to negative proteinuria and a family history. ADTKD-MUC1 leads to the formation of a frameshift protein that accumulates in the cytoplasm, leading to tubulointerstitial damage. ADTKD-MUC1 prevalence remains unclear because MUC1 variants are not routinely detected by standard next-generation sequencing (NGS) techniques. Methods: We developed a bioinformatic counting script that can detect specific genetic sequences and count the number of occurrences. We used DNA samples from 27 patients for validation, 11 of them were patients from the Lille University Hospital in France and 16 were from the Wake Forest Hospital, NC. All patients from Lille were tested with an NGS gene panel with our script and all patients from Wake Forest Hospital were tested with the snapshot reference technique. Between January 2018 and February 2023, we collected data on all patients diagnosed with MUC1 variants with this script. Results: A total of 27 samples were tested anonymously by the BROAD Institute reference technique for confirmation and we were able to get a 100% concordance for MUC1 diagnosis. Clinico-biologic characteristics in our cohort were similar to those previously described in ADTKD-MUC1. Conclusion: We describe a new simple and cost-effective method for molecular testing of ADTKD-MUC1. Genetic analyses in our cohort suggest that MUC1 might be the first cause of ADTKD. Increasing the availability of MUC1 diagnosis tools will contribute to a better understanding of the disease and to the development of specific treatments.

2.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38096951

ABSTRACT

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Subject(s)
Amyloidosis , Apolipoproteins A , Nephritis, Interstitial , Renal Insufficiency, Chronic , Humans , Middle Aged , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/genetics , Nephritis, Interstitial/complications , Mutation , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/complications
3.
Nat Commun ; 14(1): 6493, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838725

ABSTRACT

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.


Subject(s)
Polycystic Kidney Diseases , Humans , Mice , Animals , Autophagy/genetics , Homeostasis , Fibrosis , Nerve Growth Factors/genetics
4.
Obstet Med ; 16(3): 162-169, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720000

ABSTRACT

Introduction: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of chronic kidney disease. ADTKD pregnancy outcomes have not previously been described. Methods: A cross-sectional survey was sent to women from ADTKD families. Results: Information was obtained from 85 afffected women (164 term pregnancies) and 23 controls (50 pregnancies). Only 16.5% of genetically affected women knew they had ADTKD during pregnancy. Eighteen percent of ADTKD mothers had hypertension during pregnancy versus 12% in controls (p = 0.54) and >40% in comparative studies of chronic kidney disease in pregnancy. Eleven percent of births of ADTKD mothers were <37 weeks versus 0 in controls (p < 0.0001). Cesarean section occurred in 19% of pregnancies in affected women versus 38% of unaffected individuals (p = 0.06). Only 12% of babies required a neonatal intensive care unit stay. Conclusions: ADTKD pregnancies had lower rates of hypertension during pregnancy versus other forms of chronic kidney disease, which may have contributed to good maternal and fetal outcomes.

6.
Antioxidants (Basel) ; 12(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37107275

ABSTRACT

Karyomegalic interstitial nephritis (KIN) is a genetic adult-onset chronic kidney disease (CKD) characterized by genomic instability and mitotic abnormalities in the tubular epithelial cells. KIN is caused by recessive mutations in the FAN1 DNA repair enzyme. However, the endogenous source of DNA damage in FAN1/KIN kidneys has not been identified. Here we show, using FAN1-deficient human renal tubular epithelial cells (hRTECs) and FAN1-null mice as a model of KIN, that FAN1 kidney pathophysiology is triggered by hypersensitivity to endogenous reactive oxygen species (ROS), which cause chronic oxidative and double-strand DNA damage in the kidney tubular epithelial cells, accompanied by an intrinsic failure to repair DNA damage. Furthermore, persistent oxidative stress in FAN1-deficient RTECs and FAN1 kidneys caused mitochondrial deficiencies in oxidative phosphorylation and fatty acid oxidation. The administration of subclinical, low-dose cisplatin increased oxidative stress and aggravated mitochondrial dysfunction in FAN1-deficient kidneys, thereby exacerbating KIN pathophysiology. In contrast, treatment of FAN1 mice with a mitochondria-targeted ROS scavenger, JP4-039, attenuated oxidative stress and accumulation of DNA damage, mitigated tubular injury, and preserved kidney function in cisplatin-treated FAN1-null mice, demonstrating that endogenous oxygen stress is an important source of DNA damage in FAN1-deficient kidneys and a driver of KIN pathogenesis. Our findings indicate that therapeutic modulation of kidney oxidative stress may be a promising avenue to mitigate FAN1/KIN kidney pathophysiology and disease progression in patients.

8.
J Biol Chem ; 299(3): 102925, 2023 03.
Article in English | MEDLINE | ID: mdl-36682497

ABSTRACT

Polymorphism of the gene encoding mucin 1 (MUC1) is associated with skeletal and dental phenotypes in human genomic studies. Animals lacking MUC1 exhibit mild reduction in bone density. These phenotypes could be a consequence of modulation of bodily Ca homeostasis by MUC1, as suggested by the previous observation that MUC1 enhances cell surface expression of the Ca2+-selective channel, TRPV5, in cultured unpolarized cells. Using biotinylation of cell surface proteins, we asked whether MUC1 influences endocytosis of TRPV5 and another Ca2+-selective TRP channel, TRPV6, in cultured polarized epithelial cells. Our results indicate that MUC1 reduces endocytosis of both channels, enhancing cell surface expression. Further, we found that mice lacking MUC1 lose apical localization of TRPV5 and TRPV6 in the renal tubular and duodenal epithelium. Females, but not males, lacking MUC1 exhibit reduced blood Ca2+. However, mice lacking MUC1 exhibited no differences in basal urinary Ca excretion or Ca retention in response to PTH receptor signaling, suggesting compensation by transport mechanisms independent of TRPV5 and TRPV6. Finally, humans with autosomal dominant tubulointerstitial kidney disease due to frame-shift mutation of MUC1 (ADTKD-MUC1) exhibit reduced plasma Ca concentrations compared to control individuals with mutations in the gene encoding uromodulin (ADTKD-UMOD), consistent with MUC1 haploinsufficiency causing reduced bodily Ca2+. In summary, our results provide further insight into the role of MUC1 in Ca2+-selective TRP channel endocytosis and the overall effects on Ca concentrations.


Subject(s)
Calcium , Mucin-1 , TRPV Cation Channels , Animals , Female , Humans , Mice , Calcium/blood , Calcium/metabolism , Calcium/urine , Cell Membrane/metabolism , Cells, Cultured , Mucin-1/genetics , Mucin-1/metabolism , TRPV Cation Channels/metabolism , Epithelial Cells/metabolism , Sex Factors , Mutation , Protein Transport/genetics
9.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711449

ABSTRACT

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

10.
Am J Med Genet C Semin Med Genet ; 190(3): 309-324, 2022 09.
Article in English | MEDLINE | ID: mdl-36250282

ABSTRACT

The clinical characteristics of autosomal dominant tubulointerstitial kidney disease (ADTKD) include bland urinary sediment, slowly progressive chronic kidney disease (CKD) with many patients reaching end stage renal disease (ESRD) between age 20 and 70 years, and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD. Pathogenic variants in UMOD, MUC1, and REN are the most common causes of ADTKD. ADTKD-UMOD is also associated with hyperuricemia and gout. ADTKD-REN often presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-MUC1 patients present only with CKD. This review describes the pathophysiology, genetics, clinical manifestation, and diagnosis for ADTKD, with an emphasis on genetic testing and genetic counseling suggestions for patients.


Subject(s)
Genetic Testing , Renal Insufficiency, Chronic , Humans , Young Adult , Adult , Middle Aged , Aged , Uromodulin/genetics , Mutation
11.
Proc Natl Acad Sci U S A ; 119(33): e2114734119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35947615

ABSTRACT

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Subject(s)
Renal Insufficiency, Chronic , Uromodulin , Heterozygote , Humans , Mutation , Renal Insufficiency, Chronic/genetics , Uromodulin/genetics
12.
J Nephrol ; 35(6): 1655-1665, 2022 07.
Article in English | MEDLINE | ID: mdl-35099770

ABSTRACT

BACKGROUND AND AIMS: Genetic testing presents a unique opportunity for diagnosis and management of genetic kidney diseases (GKD). Here, we describe the clinical utility and valuable impact of a specialized GKD clinic, which uses a variety of genomic sequencing strategies. METHODS: In this prospective cohort study, we undertook genetic testing in adults with suspected GKD according to prespecified criteria. Over 7 years, patients were referred from tertiary centres across Ireland to an academic medical centre as part of the Irish Kidney Gene Project. RESULTS: Among 677 patients, the mean age was of 37.2 ± 13 years, and 73.9% of the patients had family history of chronic kidney disease (CKD). We achieved a molecular diagnostic rate of 50.9%. Four genes accounted for more than 70% of identified pathogenic variants: PKD1 and PKD2 (n = 186, 53.4%), MUC1 (8.9%), and COL4A5 (8.3%). In 162 patients with a genetic diagnosis, excluding PKD1/PKD2, the a priori diagnosis was confirmed in 58% and in 13% the diagnosis was reclassified. A genetic diagnosis was established in 22 (29.7%) patients with CKD of uncertain aetiology. Based on genetic testing, a diagnostic kidney biopsy was unnecessary in 13 (8%) patients. Presence of family history of CKD and the underlying a priori diagnosis were independent predictors (P < 0.001) of a positive genetic diagnosis. CONCLUSIONS: A dedicated GKD clinic is a valuable resource, and its implementation of various genomic strategies has resulted in a direct, demonstrable clinical and therapeutic benefits to affected patients.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Renal Insufficiency, Chronic , Adult , Genetic Testing/methods , Humans , Kidney , Middle Aged , Mutation , Polycystic Kidney, Autosomal Dominant/diagnosis , Prospective Studies , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , TRPP Cation Channels/genetics , Young Adult
13.
Pediatr Nephrol ; 37(5): 933-946, 2022 05.
Article in English | MEDLINE | ID: mdl-34021396

ABSTRACT

Autosomal dominant tubulointerstitial kidney disease (ADTKD) refers to a group of disorders with a bland urinary sediment, slowly progressive chronic kidney disease (CKD), and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD in both children and adults. ADTKD-REN presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-UMOD is associated with gout and CKD that may present in adolescence and slowly progresses to kidney failure. HNF1ß mutations often present in childhood with anatomic abnormalities such as multicystic or dysplastic kidneys, as well as CKD and a number of other extra-kidney manifestations. ADTKD-MUC1 is less common in childhood, and progressive CKD is its sole clinical manifestation, usually beginning in the late teenage years. This review describes the pathophysiology, genetics, clinical characteristics, diagnosis, and treatment of the different forms of ADTKD, with an emphasis on diagnosis. We also present data on kidney function in children with ADTKD from the Wake Forest Rare Inherited Kidney Disease Registry.


Subject(s)
Gout , Polycystic Kidney Diseases , Renal Insufficiency, Chronic , Adolescent , Adult , Child , Female , Humans , Male , Mutation , Uromodulin/genetics
15.
Am J Physiol Renal Physiol ; 321(2): F236-F244, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34251273

ABSTRACT

Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-UMOD. In the CRISPR/Cas9-generated murine model and patients with ADTKD-UMOD, we found that immunoglobulin heavy chain-binding protein (BiP), an endoplasmic reticulum chaperone, was exclusively upregulated by mutant UMOD in the thick ascending limb and easily detected by Western blot analysis in the urine at an early stage of disease. However, even the most sensitive ELISA failed to detect urinary BiP in affected individuals. We therefore developed an ultrasensitive, plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA) to quantify urinary BiP concentration by harnessing the newly invented ultrabright fluorescent nanoconstruct, termed "plasmonic Fluor." p-FLISA demonstrated that urinary BiP excretion was significantly elevated in patients with ADTKD-UMOD compared with unaffected controls, which may have potential utility in risk stratification, disease activity monitoring, disease progression prediction, and guidance of endoplasmic reticulum-targeted therapies in ADTKD.NEW & NOTEWORTHY Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is an underdiagnosed cause of chronic kidney disease (CKD). Lack of ultrasensitive bioanalytical tools has hindered the discovery of low abundant urinary biomarkers in ADTKD. Here, we developed an ultrasensitive plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA). p-FLISA demonstrated that secreted immunoglobulin heavy chain-binding protein is an early urinary endoplasmic reticulum stress biomarker in ADTKD-UMOD, which will be valuable in monitoring disease progression and the treatment response in ADTKD.


Subject(s)
Biomarkers/urine , Endoplasmic Reticulum Stress/physiology , Heat-Shock Proteins/urine , Immunosorbent Techniques , Nephritis, Interstitial/urine , Animals , Endoplasmic Reticulum Chaperone BiP , Humans , Mice , Nephritis, Interstitial/genetics , Uromodulin/genetics
16.
Am J Nephrol ; 52(5): 378-387, 2021.
Article in English | MEDLINE | ID: mdl-34098564

ABSTRACT

INTRODUCTION: Patients with ADTKD-MUC1 have one allele producing normal mucin-1 (MUC1) and one allele producing mutant MUC1, which remains intracellular. We hypothesized that ADTKD-MUC1 patients, who have only 1 secretory-competent wild-type MUC1 allele, should exhibit decreased plasma mucin-1 (MUC1) levels. To test this hypothesis, we repurposed the serum CA15-3 assay used to measure MUC1 in breast cancer to measure plasma MUC1 levels in ADTKD-MUC1. METHODS: This cross-sectional study analyzed CA15-3 levels in a reference population of 6,850 individuals, in 85 individuals with ADTKD-MUC1, and in a control population including 135 individuals with ADTKD-UMOD and 114 healthy individuals. RESULTS: Plasma CA15-3 levels (mean ± standard deviation) were 8.6 ± 4.3 U/mL in individuals with ADTKD-MUC1 and 14.6 ± 5.6 U/mL in controls (p < 0.001). While there was a significant difference in mean CA15-3 levels, there was substantial overlap between the 2 groups. Plasma CA15-3 levels were <5 U/mL in 22% of ADTKD-MUC1 patients, in 0/249 controls, and in 1% of the reference population. Plasma CA15-3 levels were >20 U/mL in 1/85 ADTKD-MUC1 patients, in 18% of control individuals, and in 25% of the reference population. Segregation of plasma CA15-3 levels by the rs4072037 genotype did not significantly improve differentiation between affected and unaffected individuals. CA15-3 levels were minimally affected by gender and estimated glomerular filtration rate. DISCUSSION/CONCLUSIONS: Plasma CA15-3 levels in ADTKD-MUC1 patients are approximately 40% lower than levels in healthy individuals, though there is significant overlap between groups. Further investigations need to be performed to see if plasma CA15-3 levels would be useful in diagnosis, prognosis, or assessing response to new therapies in this disorder.


Subject(s)
Mucin-1/blood , Nephritis, Interstitial/blood , Uromodulin/genetics , Adult , Aged , Alleles , Biomarkers/blood , Case-Control Studies , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Male , Middle Aged , Mucin-1/genetics , Mutation , Nephritis, Interstitial/genetics , Prognosis
17.
Kidney Int Rep ; 5(9): 1472-1485, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32954071

ABSTRACT

INTRODUCTION: Autosomal dominant tubulo-interstitial kidney disease due to UMOD mutations (ADTKD-UMOD) is a rare condition associated with high variability in the age of end-stage kidney disease (ESKD). The minor allele of rs4293393, located in the promoter of the UMOD gene, is present in 19% of the population and downregulates uromodulin production by approximately 50% and might affect the age of ESKD. The goal of this study was to better understand the genetic and clinical characteristics of ADTKD-UMOD and to perform a Mendelian randomization study to determine if the minor allele of rs4293393 was associated with better kidney survival. METHODS: An international group of collaborators collected clinical and genetic data on 722 affected individuals from 249 families with 125 mutations, including 28 new mutations. The median age of ESKD was 47 years. Men were at a much higher risk of progression to ESKD (hazard ratio 1.78, P < 0.001). RESULTS: The allele frequency of the minor rs4293393 allele was only 11.6% versus the 19% expected (P < 0.01), resulting in Hardy-Weinberg disequilibrium and precluding a Mendelian randomization experiment. An in vitro score reflecting the severity of the trafficking defect of uromodulin mutants was found to be a promising predictor of the age of ESKD. CONCLUSION: We report the clinical characteristics associated with 125 UMOD mutations. Male gender and a new in vitro score predict age of ESKD.

18.
Kidney Int ; 98(6): 1589-1604, 2020 12.
Article in English | MEDLINE | ID: mdl-32750457

ABSTRACT

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.


Subject(s)
Anemia , Polycystic Kidney Diseases , Adult , Child , Cohort Studies , Female , Humans , Male , Mutation , Polycystic Kidney Diseases/genetics , Renin/genetics , Young Adult
19.
Kidney Int ; 98(3): 717-731, 2020 09.
Article in English | MEDLINE | ID: mdl-32450155

ABSTRACT

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of end-stage kidney disease, primarily due to mutations in UMOD and MUC1. The lack of clinical recognition and the small size of cohorts have slowed the understanding of disease ontology and development of diagnostic algorithms. We analyzed two registries from Europe and the United States to define genetic and clinical characteristics of ADTKD-UMOD and ADTKD-MUC1 and develop a practical score to guide genetic testing. Our study encompassed 726 patients from 585 families with a presumptive diagnosis of ADTKD along with clinical, biochemical, genetic and radiologic data. Collectively, 106 different UMOD mutations were detected in 216/562 (38.4%) of families with ADTKD (303 patients), and 4 different MUC1 mutations in 72/205 (35.1%) of the families that are UMOD-negative (83 patients). The median kidney survival was significantly shorter in patients with ADTKD-MUC1 compared to ADTKD-UMOD (46 vs. 54 years, respectively), whereas the median gout-free survival was dramatically reduced in patients with ADTKD-UMOD compared to ADTKD-MUC1 (30 vs. 67 years, respectively). In contrast to patients with ADTKD-UMOD, patients with ADTKD-MUC1 had normal urinary excretion of uromodulin and distribution of uromodulin in tubular cells. A diagnostic algorithm based on a simple score coupled with urinary uromodulin measurements separated patients with ADTKD-UMOD from those with ADTKD-MUC1 with a sensitivity of 94.1%, a specificity of 74.3% and a positive predictive value of 84.2% for a UMOD mutation. Thus, ADTKD-UMOD is more frequently diagnosed than ADTKD-MUC1, ADTKD subtypes present with distinct clinical features, and a simple score coupled with urine uromodulin measurements may help prioritizing genetic testing.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Europe , Genetic Testing , Humans , Middle Aged , Mucin-1/genetics , Mutation , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Uromodulin/genetics
20.
Clin Transplant ; 34(2): e13783, 2020 02.
Article in English | MEDLINE | ID: mdl-31958169

ABSTRACT

INTRODUCTION: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare genetic cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). We aimed to compare renal transplant outcomes in people with ESRD due to ADTKD to those with other causes of renal failure. METHODS: Patients with clinical characteristics consistent with ADTKD by the criteria outlined in the 2015 KDIGO consensus were included. We compared ADTKD transplant outcomes with those of 4633 non-ADTKD renal transplant recipients. RESULTS: We included 31 patients who met diagnostic criteria for ADTKD in this analysis, 23 of whom had an identified mutation (28 were categorized as definite-ADTKD and 3 as suspected ADTKD). Five patients received a second transplant during follow-up. In total, 36 grafts were included. We did not identify significant differences between groups in terms of graft or patient survival after transplantation. Twenty-five transplant biopsies were performed during follow-up, and none of these showed signs of recurrent ADTKD post-transplant. CONCLUSION: In patients with ESRD due to ADTKD, we demonstrate that transplant outcomes are comparable with the general transplant population. There is no evidence that ADTKD can recur after transplantation.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Polycystic Kidney, Autosomal Dominant , Graft Survival , Humans , Kidney Failure, Chronic/surgery , Mutation , Uromodulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...