Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol ; 19(6): 731-41, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726687

ABSTRACT

Dynamic fluxes in the concentration of ions and small molecules are fundamental features of cell signaling, differentiation, and development. Similar roles for fluxes in transition metal concentrations are less well established. Here, we show that massive zinc fluxes are essential in the infection cycle of an intracellular eukaryotic parasite. Using single-cell quantitative imaging, we show that growth of the blood-stage Plasmodium falciparum parasite requires acquisition of 30 million zinc atoms per erythrocyte before host cell rupture, corresponding to a 400% increase in total zinc concentration. Zinc accumulates in a freely available form in parasitophorous compartments outside the food vacuole, including mitochondria. Restriction of zinc availability via small molecule treatment causes a drop in mitochondrial membrane potential and severely inhibits parasite growth. Thus, extraordinary zinc acquisition and trafficking are essential for parasite development.


Subject(s)
Erythrocytes/drug effects , Molecular Dynamics Simulation , Plasmodium falciparum/drug effects , Zinc/pharmacology , Dose-Response Relationship, Drug , Erythrocytes/chemistry , Humans , Plasmodium falciparum/growth & development , Structure-Activity Relationship , Zinc/chemistry
2.
BMC Genomics ; 13: 120, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22452820

ABSTRACT

BACKGROUND: The sequence of the pathogen Mycobacterium tuberculosis (Mtb) strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. RESULTS: Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. CONCLUSIONS: Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.


Subject(s)
Actinobacteria/genetics , Evolution, Molecular , Mycobacterium tuberculosis/genetics , Mycobacterium/genetics , Actinobacteria/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coenzymes/genetics , Coenzymes/metabolism , DNA Repair , Databases, Genetic , Fatty Acids/genetics , Fatty Acids/metabolism , Genome, Bacterial , Genomics , Lipid Metabolism/genetics , Metalloproteins/genetics , Metalloproteins/metabolism , Molybdenum Cofactors , Mycobacterium/classification , Mycobacterium tuberculosis/classification , Phylogeny , Pteridines/metabolism , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism
3.
Biochemistry ; 41(50): 15085-92, 2002 Dec 17.
Article in English | MEDLINE | ID: mdl-12475258

ABSTRACT

Manganese is an essential micronutrient for many organisms. Because of its unique role in the water oxidizing activity of photosystem II, manganese is required for photosynthetic growth in plants and cyanobacteria. Here we report on the mechanism of manganese uptake in the cyanobacterium Synechocystis sp. PCC 6803. Cells grown in 9 microM manganese-containing medium accumulate up to 1 x 10(8) manganese atoms/cell, bound to the outer membrane (pool A). This pool could be released by EDTA treatment. Accumulation of manganese in pool A was energized by photosynthetic electron flow. Moreover, collapsing the membrane potential resulted in the immediate release of this manganese pool. The manganese in this pool is mainly Mn(II) in a six-coordinate distorted environment. A distinctly different pool of manganese, pool B ( approximately 1.5 x 10(6) atoms/cell), could not be extracted by EDTA. Transport into pool B was light-independent and could be detected only under limiting manganese concentrations (1 nM). Evidently, manganese uptake in Synechocystis 6803 cells occurs in two steps. First, manganese accumulates in the outer membrane (pool A) in a membrane potential-dependent process. Next, manganese is transported through the inner membrane into pool B. We propose that pool A serves as a store that allows the cells to overcome transient limitations in manganese in the environment.


Subject(s)
Cyanobacteria/metabolism , Light , Manganese/chemistry , Manganese/metabolism , Photosynthesis , ATP-Binding Cassette Transporters/genetics , Cyanobacteria/genetics , Cyanobacteria/growth & development , Cyanobacteria/radiation effects , Energy Metabolism/radiation effects , Manganese/radiation effects , Periplasmic Binding Proteins/genetics , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Photosystem II Protein Complex , Radioisotopes/metabolism , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...