Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 19(10): 16477-88, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25314607

ABSTRACT

Hydrophobic Y-zeolite (SiO2/Al2O3 = 810) and TiO2 composite photocatalysts were designed by using two different types of TiO2 precursors, i.e., titanium ammonium oxalate and ammonium hexafluorotitanate. The porous structure, surface property and state of TiO2 were investigated by various characterization techniques. By using an ammonium hexafluorotitanate as a precursor, hydrophobic modification of the Y-zeolite surface and realizing visible light sensitivity was successfully achieved at the same time after calcination at 773 K in the air. The prepared sample still maintained the porous structure of Y-zeolite and a large surface area. Highly crystalline anatase TiO2 was also formed on the Y-zeolite surface by the role of fluorine in the precursor. The usages of ammonium hexafluorotitanate were effective for the improvement of the photocatalytic performance of the composite in the degradation of 2-propanol in the gas phase under UV and visible light (λ > 420 nm) irradiation.


Subject(s)
2-Propanol/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Zeolites/chemistry , Catalysis , Hydrophobic and Hydrophilic Interactions , Surface Properties , Ultraviolet Rays
2.
J Am Chem Soc ; 136(1): 488-94, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24344633

ABSTRACT

At present, significant research efforts are being devoted both to identifying means of upgrading existing batteries, including lithium ion types, and also to developing alternate technologies, such as sodium ion, metal-air, and lithium-sulfur batteries. In addition, new battery systems incorporating novel electrode reactions are being identified. One such system utilizes the reaction of electrolyte ions with oxygen atoms reversibly extracted and reinserted topotactically from cathode materials. Batteries based on this system allow the use of various anode materials, such as lithium and sodium, without the requirement to develop new cathode intercalation materials. In the present study, this concept is employed and a new battery based on a CaFeO3 cathode with a sodium anode is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...