Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Probl Diagn Radiol ; 53(4): 445-448, 2024.
Article in English | MEDLINE | ID: mdl-38508976

ABSTRACT

From mammographic screening guidelines to resident work hour regulations, public policy affects every aspect of the practice of radiology and ultimately determines how radiological care is delivered to patients. Shaping public policy through advocacy is therefore critical to ensure patient access to equitable, high-quality radiological care. In advocacy, individual practicing radiologists and radiology trainees can increase the scope of their influence by collaborating with professional radiology societies. When radiology trainees participate in organized radiology advocacy, they learn about regulatory and legislative issues that will affect their careers, and they learn how to effect policy change. Radiology societies in turn benefit from trainee involvement, as engaging trainees early in their careers leads to more robust future participation and leadership. To encourage trainee involvement, radiology societies can engage individual residency programs and medical student radiology interest groups, invest in trainee-focused events, and maximize the number of positions of responsibility open to trainees. To circumvent the barriers to participation that many trainees face, radiology societies can make meeting proceedings free and available through virtual mediums. Through active collaboration, trainees and professional societies can help assure a bright future for radiologists and patients in need of radiological care.


Subject(s)
Internship and Residency , Radiology , Societies, Medical , Humans , Radiology/education , Patient Advocacy , Cooperative Behavior
2.
Diagnostics (Basel) ; 13(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38132273

ABSTRACT

More than 600 million people globally are estimated to be living with chronic pain. It is one of the most common complaints seen in an outpatient setting, with over half of patients complaining of pain during a visit. Failure to properly diagnose and manage chronic pain is associated with substantial morbidity and mortality, especially when opioids are involved. Furthermore, it is a tremendous financial strain on the healthcare system, as over USD 100 billion is spent yearly in the United States on healthcare costs related to pain management and opioids. This exceeds the costs of diabetes, heart disease, and cancer-related care combined. Being able to properly diagnose, manage, and treat chronic pain conditions can substantially lower morbidity, mortality, and healthcare costs in the United States. This review will outline the current definitions, biopsychosocial model, subclassifications, somatosensory assessments, imaging, clinical prediction models, and treatment modalities associated with chronic pain.

3.
Cereb Cortex ; 29(8): 3482-3495, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30192926

ABSTRACT

Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3ß, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3ß. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3ß inhibitors may enhance neurodevelopment in premature infants with IVH.


Subject(s)
Apoptosis/drug effects , Cerebral Intraventricular Hemorrhage/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Thiazoles/pharmacology , Urea/analogs & derivatives , Animals , Blotting, Western , Case-Control Studies , Cell Count , Cell Proliferation , Cerebral Cortex , Cerebral Intraventricular Hemorrhage/pathology , Disease Models, Animal , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Humans , Immunohistochemistry , Infant, Extremely Premature , Infant, Newborn , Ki-67 Antigen/metabolism , Lateral Ventricles , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , PAX6 Transcription Factor/metabolism , Phosphorylation , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rabbits , Real-Time Polymerase Chain Reaction , Retinoblastoma Protein/metabolism , SOXB1 Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , Urea/pharmacology , White Matter
4.
Glia ; 64(11): 1987-2004, 2016 11.
Article in English | MEDLINE | ID: mdl-27472419

ABSTRACT

Intraventricular hemorrhage (IVH) leads to reduced myelination and astrogliosis of the white matter in premature infants. No therapeutic strategy exists to minimize white matter injury in survivors with IVH. Epidermal growth factor (EGF) enhances myelination, astrogliosis, and neurologic recovery in animal models of white matter injury. Here, we hypothesized that recombinant human (rh) EGF treatment would enhance oligodendrocyte precursor cell (OPC) maturation, myelination, and neurological recovery in preterm rabbits with IVH. In addition, rhEGF would promote astrogliosis by inducing astroglial progenitor proliferation and GFAP transcription. We tested these hypotheses in a preterm rabbit model of IVH and evaluated autopsy samples from human preterm infants. We found that EGF and EGFR expression were more abundant in the ganglionic eminence relative to the cortical plate and white matter of human infants and that the development of IVH reduced EGF levels, but not EGFR expression. Accordingly, rhEGF treatment promoted proliferation and maturation of OPCs, preserved myelin in the white matter, and enhanced neurological recovery in rabbits with IVH. rhEGF treatment inhibited Notch signaling, which conceivably contributed to OPC maturation. rhEGF treatment contributed to astrogliosis by increasing astroglial proliferation and upregulating GFAP as well as Sox9 expression. Hence, IVH results in a decline in EGF expression; and rhEGF treatment preserves myelin, restores neurological recovery, and exacerbates astrogliosis by inducing proliferation of astrocytes and enhancing transcription of GFAP and Sox9 in pups with IVH. rhEGF treatment might improve the neurological outcome of premature infants with IVH. GLIA 2016;64:1987-2004.


Subject(s)
Astrocytes/drug effects , Cerebral Intraventricular Hemorrhage/complications , Cerebral Intraventricular Hemorrhage/pathology , Epidermal Growth Factor/pharmacology , Gliosis/etiology , Myelin Sheath/metabolism , Age Factors , Animals , Animals, Newborn , Astrocytes/ultrastructure , Brain/embryology , Brain/growth & development , Brain/pathology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cerebral Intraventricular Hemorrhage/chemically induced , Disease Models, Animal , Embryo, Mammalian , Gene Expression Regulation/physiology , Glial Fibrillary Acidic Protein/metabolism , Humans , Infant, Newborn , Infant, Premature , Ki-67 Antigen/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/pathology , Oligodendroglia/ultrastructure , Rabbits , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...