Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 20: 149-61, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23455171

ABSTRACT

The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials.


Subject(s)
Biocompatible Materials/chemistry , Titanium/chemistry , Alloys/chemistry , Elastic Modulus , Hot Temperature , Porosity , Powders , Pressure , Tensile Strength
2.
J Phys Condens Matter ; 25(11): 115401, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23407023

ABSTRACT

In this article we study the elemental distribution and solute solubility in nanocrystalline alloys of immiscible components near restricted equilibrium for the case of the binary Cu-Ag system. As predicted from thermodynamic considerations, a grain boundary segregated monophase alloy is observed in the annealed mechanically alloyed state for low Ag content by using atom probe tomography. From the detected Ag solute grain boundary enrichment the segregation free enthalpy is estimated to range between -25 and -49 kJ mol(-1) following the McLean equation, in agreement with values reported for coarse-grained Cu-Ag. The extension of the alloying range is described by a two-domain thermodynamic model that considers the excess free volume in the grain boundaries and the strain in the grain interior on the basis of the universal equation of state at negative pressure. To access the grain boundary volumetric strain experimentally, a method based on a combination of density measurements and microscopical quantification of closed pore areas is presented. Moreover, we apply x-ray diffraction line broadening analysis to determine the local strain amplitude, which yields a root-mean-square microstrain of ~0.3% for a grain size of ~30 nm. It is shown that the grain boundary free volume represents the major origin for the global solubility enhancement in nanocrystalline Cu-Ag at 503 K.

3.
Nat Commun ; 2: 298, 2011.
Article in English | MEDLINE | ID: mdl-21540840

ABSTRACT

The complex transport processes contributing to sintering are not yet fully understood, partially because in-situ observations of sintering in three dimensions (3D) are very difficult. Here we report a novel experiment in which monocrystalline copper spheres are first marked with microscopic boreholes drilled using a focused ion beam, after which high-resolution synchrotron X-ray tomography is carried out to measure translational, rolling and intrinsic rotation movements of some hundred spheres during sintering. Unlike in 1D and 2D systems, we show that, in 3D, intrinsic rotations are more pronounced than angular rolling rearrangements of the particle centres and become the dominant mechanism of particle movement. We conclude that in addition to the well-known neck growth and centre approach mechanisms, grain boundary sliding caused by the different crystallographic orientations of the individual spheres occurs.

4.
Acta Biomater ; 6(3): 1006-13, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19800426

ABSTRACT

A novel titanium-based material, containing no toxic or expensive alloying elements, was compared to the established biomaterials: commercially pure titanium (c.p.Ti) and Ti6Al4V. This material (Ti/1.3HMDS) featured similar hardness, yield strength and better wear resistance than Ti6Al4V, as well as better electrochemical properties at physiological pH7.4 than c.p.Ti grade 1 of our study. These excellent properties were obtained by utilizing an alternative mechanism to produce a microstructure of very fine titanium silicides and carbides (<100 nm) embedded in an ultra-fine-grained Ti matrix (365 nm). The grain refinement was achieved by high-energy ball milling of Ti powder with 1.3 wt.% of hexamethyldisilane (HMDS). The powder was consolidated by spark plasma sintering at moderate temperatures of 700 degrees C. The microstructure was investigated by optical and scanning electron microscopy (SEM) and correlated to the mechanical properties. Fluorescence microscopy revealed good adhesion of human mesenchymal stem cells on Ti/1.3HMDS comparable to that on c.p.Ti or Ti6Al4V. Biochemical analysis of lactate dehydrogenase and specific alkaline phosphatase activities of osteogenically induced hMSC exhibited equal proliferation and differentiation rates in all three cases. Thus the new material Ti/1.3HMDS represents a promising alternative to the comparatively weak c.p.Ti and toxic elements containing Ti6Al4V.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Titanium/chemistry , Titanium/pharmacology , Adult , Cells, Cultured , Humans , Materials Testing , Particle Size , Surface Properties
5.
J Synchrotron Radiat ; 16(Pt 4): 524-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19535867

ABSTRACT

A radiation furnace that covers the temperature range from room temperature up to 1800 K has been designed and constructed for in situ synchrotron microtomography. The furnace operates under a vacuum or under any inert gas atmosphere. The two 1000 W halogen heating lamps are water- and air-cooled. The samples are located at the focus of these lamp reflectors on a rotary feedthrough that is connected to a driving rotation stage below the furnace. The X-ray beam penetrates the furnace through two X-ray-transparent vacuum-sealed windows. Further windows can be used for temperature control, sample changing and gas inflow and outflow.


Subject(s)
Tomography/instrumentation , Equipment Design , Hot Temperature , Microscopy, Electron, Scanning , Synchrotrons , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...