Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(1): e84977, 2014.
Article in English | MEDLINE | ID: mdl-24416325

ABSTRACT

BACKGROUND: The on-field diagnosis of sports-related concussion (SRC) is complicated by the lack of an accurate and objective marker of brain injury. PURPOSE: To compare subject-specific changes in the astroglial protein, S100B, before and after SRC among collegiate and semi-professional contact sport athletes, and compare these changes to differences in S100B before and after non-contact exertion. STUDY DESIGN: Longitudinal cohort study. METHODS: From 2009-2011, we performed a prospective study of athletes from Munich, Germany, and Rochester, New York, USA. Serum S100B was measured in all SRC athletes at pre-season baseline, within 3 hours of injury, and at days 2, 3 and 7 post-SRC. Among a subset of athletes, S100B was measured after non-contact exertion but before injury. All samples were collected identically and analyzed using an automated electrochemiluminescent assay to quantify serum S100B levels. RESULTS: Forty-six athletes (30 Munich, 16 Rochester) underwent baseline testing. Thirty underwent additional post-exertion S100B testing. Twenty-two athletes (16 Rochester, 6 Munich) sustained a SRC, and 17 had S100B testing within 3 hours post-injury. The mean 3-hour post-SRC S100B was significantly higher than pre-season baseline (0.099±0.008 µg/L vs. 0.058±0.006 µg/L, p = 0.0002). Mean post-exertion S100B was not significantly different than the preseason baseline. S100B levels at post-injury days 2, 3 and 7 were significantly lower than the 3-hour level, and not different than baseline. Both the absolute change and proportional increase in S100B 3-hour post-injury were accurate discriminators of SRC from non-contact exertion without SRC (AUC 0.772 and 0.904, respectively). A 3-hour post-concussion S100B >0.122 µg/L and a proportional S100B increase of >45.9% over baseline were both 96.7% specific for SRC. CONCLUSIONS: Relative and absolute increases in serum S100B can accurately distinguish SRC from sports-related exertion, and may be a useful adjunct to the diagnosis of SRC.


Subject(s)
Athletes , Brain Concussion/blood , Physical Exertion/genetics , S100 Calcium Binding Protein beta Subunit/blood , Adult , Biomarkers/blood , Brain Concussion/diagnosis , Brain Concussion/genetics , Female , Gene Expression , Humans , Longitudinal Studies , Male , S100 Calcium Binding Protein beta Subunit/genetics , Sports , Time Factors
2.
J Neurotrauma ; 30(20): 1747-54, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23758329

ABSTRACT

The objective of the current study was to determine the classification accuracy of serum S100B and apolipoprotein (apoA-I) for mild traumatic brain injury (mTBI) and abnormal initial head computed tomography (CT) scan, and to identify ethnic, racial, age, and sex variation in classification accuracy. We performed a prospective, multi-centered study of 787 patients with mTBI who presented to the emergency department within 6 h of injury and 467 controls who presented to the outpatient laboratory for routine blood work. Serum was analyzed for S100B and apoA-I. The outcomes were disease status (mTBI or control) and initial head CT scan. At cutoff values defined by 90% of controls, the specificity for mTBI using S100B (0.899 [95% confidence interval (CI): 0.78-0.92]) was similar to that using apoA-I (0.902 [0.87-0.93]), and the sensitivity using S100B (0.252 [0.22-0.28]) was similar to that using apoA-I (0.249 [0.22-0.28]). The area under the receiver operating characteristic curve (AUC) for the combination of S100B and apoA-I (0.738, 95% CI: 0.71, 0.77), however, was significantly higher than the AUC for S100B alone (0.709, 95% CI: 0.68, 0.74, p=0.001) and higher than the AUC for apoA-I alone (0.645, 95% CI: 0.61, 0.68, p<0.0001). The AUC for prediction of abnormal initial head CT scan using S100B was 0.694 (95%CI: 0.62, 0.77) and not significant for apoA-I. At a S100B cutoff of <0.060 µg/L, the sensitivity for abnormal head CT was 98%, and 22.9% of CT scans could have been avoided. There was significant age and race-related variation in the accuracy of S100B for the diagnosis of mTBI. The combined use of serum S100B and apoA-I maximizes classification accuracy for mTBI, but only S100B is needed to classify abnormal head CT scan. Because of significant subgroup variation in classification accuracy, age and race need to be considered when using S100B to classify subjects for mTBI.


Subject(s)
Apolipoprotein A-I/blood , Brain Injuries/diagnosis , Brain/diagnostic imaging , S100 Calcium Binding Protein beta Subunit/blood , Adolescent , Adult , Age Factors , Aged , Brain Injuries/blood , Brain Injuries/radiotherapy , Child , Female , Humans , Injury Severity Score , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Radiography , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...