Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(5): 3238-3247, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36706437

ABSTRACT

A well-known catalyst, fac-Re(4,4'-R2-bpy)(CO)3Cl (bpy = bipyridine; R = COOH) (ReC0A), has been widely studied for CO2 reduction; however, its photocatalytic performance is limited due to its narrow absorption range. Quantum dots (QDs) are efficient light harvesters that offer several advantages, including size tunability and broad absorption in the solar spectrum. Therefore, photoinduced CO2 reduction over a broad range of the solar spectrum could be enabled by ReC0A catalysts heterogenized on QDs. Here, we investigate interfacial electron transfer from Cd3P2 QDs to ReC0A complexes covalently bound on the QD surface, induced by photoexcitation of the QD. We explore the effect of triethylamine, a sacrificial hole scavenger incorporated to replenish the QD with electrons. Through combined transient absorption spectroscopic and computational studies, we demonstrate that electron transfer from Cd3P2 to ReC0A can be enhanced by a factor of ∼4 upon addition of triethylamine. We hypothesize that the rate enhancement is a result of triethylamine possibly altering the energetics of the Cd3P2-ReC0A system by interacting with the quantum dot surface, deprotonation of the quantum dot, and preferential solvation, resulting in a shift of the conduction band edge to more negative potentials. We also observe the rate enhancement in other QD-electron acceptor systems. Our findings provide mechanistic insights into hole scavenger-quantum dot interactions and how they may influence photoinduced interfacial electron transfer processes.

2.
Health Psychol Behav Med ; 9(1): 895-916, 2021.
Article in English | MEDLINE | ID: mdl-34712514

ABSTRACT

BACKGROUND: This study examines people's ability to fake their reported health behavior and explores the magnitude of such response distortion concerning faking of preventive health behavior and health risk behavior. As health behavior is a sensitive topic, people usually prefer privacy about it or they wish to create a better image of themselves (Fekken et al., 2012; Levy et al., 2018). Nevertheless, health behavior is often assessed by self-report questionnaires that are prone to faking. Therefore, it is important to examine the possible impact of such faking. METHODS: To replicate the findings and test their robustness, two study designs were realized. In the within-subjects-design, 142 participants repeatedly answered a health behavior questionnaire with an instruction to answer honestly, fake good, and fake bad. In the between-subjects design, 128 participants were randomly assigned to one of three groups that filled out the health behavior questionnaire with only one of the three instructions. RESULTS: Both studies showed that successful faking of self-reported preventive and health risk behavior was possible. The magnitude of such faking effects was very large in the within-subjects design and somewhat smaller in the between-subjects design. CONCLUSION: Even though each design has its inherent merits and problems, caution is indicated regarding faking effects.

3.
J Chem Phys ; 155(13): 134502, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34624983

ABSTRACT

Two-dimensional infrared (2D-IR) spectroscopy is used to measure the spectral dynamics of the metal carbonyl complex cyclopentadienyl manganese tricarbonyl (CMT) in a series of linear alkyl nitriles. 2D-IR spectroscopy provides direct readout of solvation dynamics through spectral diffusion, probing the decay of frequency correlation induced by fluctuations of the solvent environment. 2D-IR simultaneously monitors intramolecular vibrational energy redistribution (IVR) among excited vibrations, which can also be influenced by the solvent through the spectral density rather than the dynamical friction underlying solvation. Here, we report that the CMT vibrational probe reveals solvent dependences in both the spectral diffusion and the IVR time scales, where each slows with increased alkyl chain length. In order to assess the degree to which solute-solvent interactions can be correlated with bulk solvent properties, we compared our results with low-frequency dynamics obtained from optical Kerr effect (OKE) spectroscopy-performed by others-on the same nitrile solvent series. We find excellent correlation between our spectral diffusion results and the orientational dynamics time scales from OKE. We also find a correlation between our IVR time scales and the amplitudes of the low-frequency spectral densities evaluated at the 90-cm-1 energy difference, corresponding to the gap between the two strong vibrational modes of the carbonyl probe. 2D-IR and OKE provide complementary perspectives on condensed phase dynamics, and these findings provide experimental evidence that at least at the level of dynamical correlations, some aspects of a solute vibrational dynamics can be inferred from properties of the solvent.

4.
J Phys Chem Lett ; 12(15): 3712-3717, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33835814

ABSTRACT

Unraveling electrocatalytic mechanisms, as well as fundamental structural dynamics of intermediates, requires spectroscopy with high time and frequency resolution that can account for nonequilibrium in situ concentration changes inherent to electrochemistry. Two-dimensional infrared (2D-IR) spectroscopy is an ideal candidate, but several technical challenges have hindered development of this powerful tool for spectroelectrochemistry (SEC). We demonstrate a transmission-mode, optically transparent thin-layer electrochemical (OTTLE) cell adapted to 2D-IR-SEC to monitor the important Re(bpy)(CO)3Cl CO2-reduction electrocatalyst. 2D-IR-SEC reveals pronounced differences in both spectral diffusion time scales and spectral inhomogeneity in the singly reduced catalyst, [Re(bpy)(CO)3Cl]•-, relative to the starting Re(bpy)(CO)3Cl. Cross-peaks between well-resolved symmetric vibrations and congested low-frequency bands enable direct assignment of all distinct species during the electrochemical reaction. With this information, 2D-IR-SEC provides new mechanistic insights regarding unproductive, catalyst-degrading dimerization. 2D-IR-SEC opens new experimental windows into the electrocatalysis foundation of future energy conversion and greenhouse gas reduction.

5.
Front Chem ; 8: 86, 2020.
Article in English | MEDLINE | ID: mdl-32117901

ABSTRACT

Heterogenization of homogenous catalysts on electrode surfaces provides a valuable approach for characterization of catalytic processes in operando conditions using surface selective spectroelectrochemistry methods. Ligand design plays a central role in the attachment mode and the resulting functionality of the heterogenized catalyst as determined by the orientation of the catalyst relative to the surface and the nature of specific interactions that modulate the redox properties under the heterogeneous electrode conditions. Here, we introduce new [Re(L)(CO)3Cl] catalysts for CO2 reduction with sulfur-based anchoring groups on a bipyridyl ligand, where L = 3,3'-disulfide-2,2'-bipyridine (SSbpy) and 3,3'-thio-2,2'-bipyridine (Sbpy). Spectroscopic and electrochemical analysis complemented by computational modeling at the density functional theory level identify the complex [Re(SSbpy)(CO)3Cl] as a multi-electron acceptor that combines the redox properties of both the rhenium tricarbonyl core and the disulfide functional group on the bipyridyl ligand. The first reduction at -0.85 V (vs. SCE) involves a two-electron process that breaks the disulfide bond, activating it for surface attachment. The heterogenized complex exhibits robust anchoring on gold surfaces, as probed by vibrational sum-frequency generation (SFG) spectroscopy. The binding configuration is normal to the surface, exposing the active site to the CO2 substrate in solution. The attachment mode is thus particularly suitable for electrocatalytic CO2 reduction.

6.
J Phys Chem A ; 122(22): 4963-4971, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29799204

ABSTRACT

Polarized ultrafast time-resolved X-ray absorption near edge structure (XANES) allows characterization of excited state dynamics following excitation. Excitation of vitamin B12, cyanocobalamin (CNCbl), in the αß-band at 550 nm and the γ-band at 365 nm was used to uniquely resolve axial and equatorial contributions to the excited state dynamics. The structural evolution of the excited molecule is best described by a coherent ballistic trajectory on the excited state potential energy surface. Prompt expansion of the Co cavity by ca. 0.03 Å is followed by significant elongation of the axial bonds (>0.25 Å) over the first 190 fs. Subsequent contraction of the Co cavity in both axial and equatorial directions results in the relaxed S1 excited state structure within 500 fs of excitation.

7.
Chem Sci ; 9(6): 1527-1533, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29675196

ABSTRACT

In homogeneous photocatalytic reduction of CO2, it is widely assumed that the primary electron transfer from the sacrificial donor to the catalyst is diffusion controlled, thus little attention has been paid to optimizing this step. We present spectroscopic evidence that the precursor complex is preformed, driven by preferential solvation, and two-dimensional infrared spectroscopy reveals triethanolamine (donor)/tetrahydrofuran (solvent) exchange in the photocatalyst's solvation shell, reaching greatest magnitude at the known optimal concentration (∼20% v/v TEOA in THF) for catalytically reducing CO2 to CO. Transient infrared absorption shows the appearance of the singly reduced catalyst on an ultrafast (<70 ps) time scale, consistent with non-diffusion controlled electron transfer within the preformed precursor complex. Identification of preferential catalyst-cosolvent interactions suggests a revised paradigm for the primary electron transfer, while illuminating the pivotal importance of solvent exchange in determining the overall efficiency of the photocycle.

8.
J Am Chem Soc ; 139(5): 1894-1899, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28135083

ABSTRACT

Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV-visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributions and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co-CN bond and Co-NIm bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. These observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.


Subject(s)
Vitamin B 12/chemistry , Molecular Structure , Photochemical Processes , Time Factors , X-Ray Absorption Spectroscopy , X-Rays
9.
J Phys Chem Lett ; 7(19): 3819-3824, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27617482

ABSTRACT

We have identified an unexpected signature of non-Gaussian dynamics in a conventional 2D IR measurement on a system with rapid intermolecular vibrational energy transfer. In a ternary mixture of the CO2 reduction photocatalyst, ReCl(bpy)(CO)3, NaSCN, and THF solvent, preferential association between the metal carbonyl catalyst and the NaSCN ion pairs facilitates intermolecular energy transfer on a few picoseconds time scale. Monitoring the cross peak between the highest frequency metal carbonyl band and the CN bands of NaSCN contact ion pairs, we find a striking time evolution of the cross-peak position on the detection axis. This frequency shift, which is due to spectral diffusion following intermolecular energy transfer, occurs with a time scale that is distinct from either the donor or acceptor spectral diffusion measured simultaneously. We argue that the energy transfer, a second-order Förster process, effectively increases the dimensionality of the 2D-IR spectroscopy and thus enables sensitivity to non-Gaussian dynamics.

10.
Acc Chem Res ; 48(4): 1123-30, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25839193

ABSTRACT

Rhenium catalysts have shown promise to promote carbon neutrality by reducing a prominent greenhouse gas, CO2, to CO and other starting materials. Much research has focused on identifying intermediates in the photocatalysis mechanism as well as time scales of relevant ultrafast processes. Recent studies have implemented multidimensional spectroscopies to characterize the catalyst's ultrafast dynamics as it undergoes the many steps of its photocycle. Two-dimensional infrared (2D-IR) spectroscopy is a powerful method to obtain molecular structure information while extracting time scales of dynamical processes with ultrafast resolution. Many observables result from 2D-IR experiments including vibrational lifetimes, intramolecular redistribution time scales, and, unique to 2D-IR, spectral diffusion, which is highly sensitive to solute-solvent interactions and motional dynamics. Spectral diffusion, a measure of how long a vibrational mode takes to sample its frequency space due to multiple solvent configurations, has various contributing factors. Properties of the solvent, the solute's structural flexibility, and electronic properties, as well as interactions between the solvent and solute, complicate identifying the origin of the spectral diffusion. With carefully chosen experiments, however, the source of the spectral diffusion can be unveiled. Within the context of a considerable body of previous work, here we discuss the spectral diffusion of several rhenium catalysts at multiple stages in the catalysis. These studies were performed in multiple polar liquids to aid in discovering the contributions of the solvent. We also performed electronic ground state 2D-IR and electronic excited state transient-2D-IR experiments to observe how spectral diffusion changes upon electronic excitation. Our results indicate that with the original Lehn catalyst in THF, relative to the ground state, the spectral diffusion slows by a factor of 3 in the equilibrated triplet metal-to-ligand charge transfer state. We attribute this slowdown to a decrease in dielectric friction as well as an increase in molecular flexibility. It is possible to partially simulate the charge transfer by altering the electron density moderately by adding electron donating or withdrawing substituents symmetrically to the bipyridine ligand. We find that unlike the significant electronic structure change induced by MLCT, such small substituent effects do not influence the spectral diffusion. A solvent study in THF, DMSO, and CH3CN found there to be an explicit solvent dependence that we can correlate to the solvent donicity, which is a measure of its nucleophilicity. Future studies focused on the solvent effects on spectral diffusion in the crucial photoinitiated state can illuminate the role the solvent plays in the catalysis.

11.
J Phys Chem A ; 119(6): 959-65, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25607849

ABSTRACT

The spectral dynamics of a series of rhenium photocatalysts, fac-Re(4,4'-R2-bpy)(CO)3Cl, where R = H, methyl, t-butyl, and carboxylic acid, as well as Re(1,10-phenanthroline)(CO)3Cl were observed in multiple aprotic solvents using two-dimensional infrared spectroscopy (2DIR). The carbonyl vibrational stretching frequencies showed slight variations due to the electron-donating or -withdrawing nature of the substituents on the bipyridine. The different substituents had minimal to no influence on the spectral diffusion time scales of the compounds within a particular solvent, but among the three different solvents investigated (DMSO, THF, and CH3CN), we find the spectral diffusion times to correlate with the solvent's donor number (DN). Because the donicity is a measure the Lewis basicity of the solvent, these findings may help establish a more complete dynamical picture of the photocatalysis, where the first chemical step following optical excitation is electron transfer from a sacrificial donor to the rhenium complex.

12.
J Phys Chem A ; 118(42): 9853-60, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25266753

ABSTRACT

A detailed understanding of photocatalyzed reaction dynamics requires a sensitive means of investigating the transient catalytically active species. Ideally, the method should be able to compare the electronically excited photocatalyst directly to the ground state species. We use equilibrium and transient two-dimensional infrared (2DIR and t-2DIR) spectroscopy to study the ground and excited state spectral dynamics of [Re(CO)3(bpy)Cl] in tetrahydrofuran (THF). We leverage the long-lived triplet excited state of the molecule to re-establish an equilibrated state relative to intersystem crossing dynamics and external solvent fluctuations, allowing access to the dynamics experienced by the excited state photocatalyst. The decay of frequency correlations within the excited triplet state species differs significantly from the ground state (slower by a factor of 3), indicating that the electronic excitation and subsequent metal-to-ligand charge transfer and associated structural changes are sufficient to perturb the spectral dynamics as sensed by the carbonyl ligands. In addition, we observe a 2-fold slowdown in ground state spectral dynamics around the in-phase symmetric vibrational mode compared to the two lower frequency, out-of-phase symmetric and asymmetric modes. Following electronic absorption and metal-to-ligand charge transfer the symmetry of the vibrational modes are disrupted, and all vibrational modes experience inhomogeneous broadening and spectral diffusion. The qualitative change in broadening mechanisms arises from the charge redistribution, indicating that direct comparisons of vibrational spectral dynamics on different electronic states-reported here for the first time-can be highly sensitive indicators of changes in electronic structure and in the concomitant solvation dynamics that underlie the microscopic details of charge transfer reactions.

13.
Faraday Discuss ; 157: 181-91; discussion 243-84, 2012.
Article in English | MEDLINE | ID: mdl-23230769

ABSTRACT

Butanol is now prominent among the prototype renewable biofuels. We have studied oxidation of a variety of butanol isomers under single collision conditions using chlorine atom as the oxidizing agent to gain detailed insight into the energetics and dynamics of these reactions. The interaction of chlorine atom radicals with butanol isomers: n-butanol, iso-butanol, sec-butanol, and tert-butanol have been studied by crossed-beam dc slice ion imaging techniques. The hydroxybutyl radicals generated from the H-abstraction processes were probed by single photon ionization using an F2 excimer laser. After background subtraction and density-to-flux correction of the raw images, translational energy distribution and product angular distributions were generated. At low collision energy, the hydroxyalkyl products are backscattered with respect to the alcohol beam and the scattering shifts to the forward direction as the collision energy is increased. The translational energy distributions are reminiscent to that of Cl + pentane reactions we studied earlier, i.e. a sharp forward peak -80% of the collision energy appears at the high collision energy. Isomer-specific details of the reactions will be discussed.

14.
Phys Chem Chem Phys ; 13(18): 8433-40, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21311812

ABSTRACT

We report the primary (D-atom) and secondary (H-atom) abstraction dynamics of chlorine atom reaction with butane-1,1,1,4,4,4-d(6). The H- and D-atom abstraction channels were studied over a range of collision energies: 10.4 kcal mol(-1) and 12.9 kcal mol(-1); 5.2 kcal mol(-1) to 12.8 kcal mol(-1), respectively, using crossed molecular beam dc slice ion imaging techniques. Single photon ionization at 157 nm was used to probe the butyl radical products resulting from the H- and D-atom abstraction reactions. These two channels manifest distinct dynamics principally in the translational energy distributions, while the angular distributions are remarkably similar. The reduced translational energy distribution for the primary abstraction showed marked variation with collision energy in the backward direction, while the secondary abstraction showed this variation in the forward direction.

15.
Mol Cancer ; 3: 17, 2004 Jun 02.
Article in English | MEDLINE | ID: mdl-15175105

ABSTRACT

BACKGROUND: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild-type protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the alpha-melanocyte stimulating hormone (alphaMSH) to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. RESULTS: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver with an increased number of liver tumors compared to non-transgenic control mice. CONCLUSIONS: The data demonstrate that liver-specific expression of the agouti gene is not sufficient to induce obesity or diabetes, but, in the absence of these factors, agouti continues to promote hepatocellular carcinogenesis.


Subject(s)
Albumins/genetics , Diabetes Mellitus/genetics , Intercellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/genetics , Liver/chemistry , Liver/metabolism , Obesity/genetics , Agouti Signaling Protein , Animals , Blood Glucose/genetics , Body Weight/physiology , Carcinogens/administration & dosage , Carcinogens/adverse effects , DNA, Complementary/genetics , Diethylnitrosamine/administration & dosage , Diethylnitrosamine/adverse effects , Insulin/blood , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/physiology , Liver/drug effects , Liver/pathology , Liver Neoplasms/chemically induced , Male , Mice , Mice, Nude , Mice, Transgenic , Organ Specificity/genetics , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/physiology
16.
Biochemistry ; 43(11): 2987-95, 2004 Mar 23.
Article in English | MEDLINE | ID: mdl-15023050

ABSTRACT

Matrix metalloproteinases (MMPs) are a family of enzymes that are up-regulated in many diseases, including osteoarthritis (OA) and rheumatoid arthritis (RA). Here we report on a novel technique that can be used to simultaneously measure activity levels for a panel of enzymes, such as the MMPs. The technique, termed the multiple-enzyme/multiple-reagent assay system (MEMRAS), relies on the use of reagents such as substrates with varying selectivity profiles against a group of enzymes. When reaction rates are measured by following a change in fluorescence with time, for mixtures of enzymes, an equation with unknown concentrations for each activity is generated for each reagent used. Simultaneously solving the set of equations leads to a solution for the unknown concentrations. We have applied this mathematical technique to measure activity levels for mixtures of MMPs such as collagenase 3 and gelatinase A. In addition, because we were most interested in determining collagenase 3 levels as a potential biological marker for OA, we developed highly selective substrates for this enzyme by using results found in previous bacteriophage substrate-mapping experiments. Some of the best substrates tested have specific activities for collagenase 3 that are 37,000-, 17,000-, 90-, and 200-fold selective over stromelysin 1, collagenase 1, and gelatinases A and B, respectively.


Subject(s)
Matrix Metalloproteinases/chemistry , Oligopeptides/chemistry , p-Dimethylaminoazobenzene/analogs & derivatives , Chromogenic Compounds , Collagenases/chemistry , Dinitrobenzenes/chemistry , Enzyme Activation , Fluorescein , Fluorometry , Gelatin , Humans , Indicators and Reagents , Kinetics , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 3/chemistry , Matrix Metalloproteinase 9/chemistry , Structure-Activity Relationship , Substrate Specificity , Synovial Fluid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...