Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol ; 272(5 Pt 2): F678-88, 1997 May.
Article in English | MEDLINE | ID: mdl-9176380

ABSTRACT

We investigate the intrarenal expression of two recently cloned chloride channels, rClC-K1 and rClC-K2, by reverse transcriptase-polymerase chain reaction on single microdissected tubules from the rat kidney and by immunohistochemistry using a polyclonal antibody that recognizes both highly homologous channels. Both rClC-K1 and rClC-K2 mRNAs were detected in outer medullary late proximal tubules (S3), papillary ascending thin limbs (ATL), and outer medullary (MTAL) and cortical (CTAL) thick ascending limbs, distal tubules (DCT), and cortical, outer medullary, and inner medullary collecting ducts. Indirect immunofluorescence studies demonstrated that the rClC-K proteins were restricted to the basolateral membranes from ATL, DCT, and collecting ducts cells, whereas CTAL and MTAL exhibited a more diffuse basal staining. When rats were dehydrated, a condition which increased the expression of rClC-K1 in cortex and medulla, a weak cytoplasmic staining was found in late proximal tubule cells. Thus these results demonstrate that rat kidney ClC-K channels are predominantly located in the basolateral membranes from cells of the late segments of the renal tubule where most of chloride reabsorption takes place.


Subject(s)
Chloride Channels/physiology , Dehydration/physiopathology , Kidney Tubules/physiology , Amino Acid Sequence , Animals , Cell Polarity , Epithelium/metabolism , Fluorescent Antibody Technique, Indirect , Gene Expression , Molecular Sequence Data , Peptides/immunology , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 91(15): 6943-7, 1994 Jul 19.
Article in English | MEDLINE | ID: mdl-8041726

ABSTRACT

We have cloned two closely related putative Cl- channels from both rat kidney (designated rClC-K1 and rClC-K2) and human kidney (hClC-Ka and hClC-Kb) by sequence homology to the ClC family of voltage-gated Cl- channels. While rClC-K1 is nearly identical to ClC-K1, a channel recently isolated by a similar strategy, rClC-K2 is 80% identical to rClC-K1 and is encoded by a different gene. hClC-Ka and hClC-Kb show approximately 90% identity, while being approximately 80% identical to the rat proteins. All ClC-K gene products are expressed predominantly in the kidney. While rClC-K1 is expressed strongly in the cortical thick ascending limb and the distal convoluted tubule, with minor expression in the S3 segment of the proximal tubule and the cortical collecting tubule, rClC-K2 is expressed in all segments of the nephron examined, including the glomerulus. Since they are related more closely to each other than to the rat proteins, hClC-Ka and hClC-Kb cannot be regarded as strict homologs of rClC-K1 or rClC-K2. After injection of ClC-K cRNAs into oocytes, corresponding proteins were made and glycosylated, though no additional Cl- currents were detectable. Glycosylation occurs between domains D8 and D9, leading to a revision of the transmembrane topology model for ClC channels.


Subject(s)
Chloride Channels/metabolism , Kidney/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chloride Channels/chemistry , Cloning, Molecular , DNA , Glycosylation , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Rats , Sequence Homology, Amino Acid , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...