Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 119(19): 10856-10915, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31469277

ABSTRACT

Practical challenges in simulating quantum systems on classical computers have been widely recognized in the quantum physics and quantum chemistry communities over the past century. Although many approximation methods have been introduced, the complexity of quantum mechanics remains hard to appease. The advent of quantum computation brings new pathways to navigate this challenging and complex landscape. By manipulating quantum states of matter and taking advantage of their unique features such as superposition and entanglement, quantum computers promise to efficiently deliver accurate results for many important problems in quantum chemistry, such as the electronic structure of molecules. In the past two decades, significant advances have been made in developing algorithms and physical hardware for quantum computing, heralding a revolution in simulation of quantum systems. This Review provides an overview of the algorithms and results that are relevant for quantum chemistry. The intended audience is both quantum chemists who seek to learn more about quantum computing and quantum computing researchers who would like to explore applications in quantum chemistry.


Subject(s)
Models, Chemical , Quantum Theory , Algorithms , Computing Methodologies , Molecular Dynamics Simulation
2.
Phys Rev Lett ; 122(22): 220501, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31283276

ABSTRACT

Heat-bath algorithmic cooling provides algorithmic ways to improve the purity of quantum states. These techniques are complex iterative processes that change from each iteration to the next and this poses a significant challenge to implementing these algorithms. Here, we introduce a new technique that on a fundamental level, shows that it is possible to do algorithmic cooling and even reach the cooling limit without any knowledge of the state and using only a single fixed operation, and on a practical level, presents a more feasible and robust alternative for implementing heat-bath algorithmic cooling. We also show that our new technique converges to the asymptotic state of heat-bath algorithmic cooling and that the cooling algorithm can be efficiently implemented; however, the saturation could require exponentially many iterations and remains impractical. This brings heat-bath algorithmic cooling to the realm of feasibility and makes it a viable option for realistic application in quantum technologies.

3.
Phys Rev Lett ; 109(5): 050501, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-23006152

ABSTRACT

We study the glued-trees problem from A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (ACM, San Diego, CA, 2003), p. 59. in the adiabatic model of quantum computing and provide an annealing schedule to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generalizations based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing due to small gaps.

SELECTION OF CITATIONS
SEARCH DETAIL
...