Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Chembiochem ; : e202400148, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629812

ABSTRACT

Native chemical ligation is a key reaction in the toolbox of chemical methods for the synthesis of native and modified proteins. The catalysis of ligation is commonly performed by using small aryl-thiol molecules added at high concentrations. In this work, we incorporated thiotyrosine, a non-canonical amino acid containing an aryl-thiol moiety, into a designed cyclic protein « sans queue ni tête ¼. Importantly, the protein environment reduced the pKa of the thiol group to 5.8-5.9, which is significantly lower than the previously reported value for thiotyrosine in a short peptide (pKa 6.4). Furthermore, we demonstrated the catalytic activity of this protein both as hydrolase and in native chemical ligation of peptides. These results will be useful for the development of efficient protein catalysts (enzymes) for protein synthesis and modification.

2.
Structure ; 32(1): 74-82.e5, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38000368

ABSTRACT

Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Staphylococcus aureus/metabolism , Bacterial Proteins/chemistry , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/metabolism , Scattering, Small Angle , Ribosome Subunits, Small, Bacterial/chemistry , X-Ray Diffraction , Electron Spin Resonance Spectroscopy , Ribosomal Proteins/chemistry , Ribosome Subunits, Small/metabolism , Cryoelectron Microscopy
3.
Structure ; 30(11): 1470-1478.e3, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36150379

ABSTRACT

Cargo adaptors are crucial in coupling motor proteins with their respective cargos and regulatory proteins. BicD2 is a prominent example within the cargo adaptor family. BicD2 is able to recruit the microtubule motor dynein to RNA, viral particles, and nuclei. The BicD2-mediated interaction between the nucleus and dynein is implicated in mitosis, interkinetic nuclear migration (INM) in radial glial progenitor cells, and neuron precursor migration during embryonic neocortex development. In vitro studies involving full-length cargo adaptors are difficult to perform due to the hydrophobic character, low-expression levels, and intrinsic flexibility of cargo adaptors. Here, we report the recombinant production of full-length human BicD2 and confirm its biochemical activity by interaction studies with RanBP2. We also describe pH-dependent conformational changes of BicD2 using cryoelectron microscopy (cryo-EM), template-free structure predictions, and biophysical tools. Our results will help define the biochemical parameters for the in vitro reconstitution of higher-order BicD2 protein complexes.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Humans , Dyneins/metabolism , Dynactin Complex/metabolism , Microtubule-Associated Proteins/metabolism , Cryoelectron Microscopy , Microtubules/metabolism
4.
Diabetes ; 71(9): 2034-2047, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35822820

ABSTRACT

Adipose tissue is a key regulator of whole-body metabolic fitness because of its role in controlling insulin sensitivity. Obesity is associated with hypertrophic adipocytes with impaired glucose absorption, a phenomenon existing in the ultrarare monogenic disorder Alström syndrome consisting of severe insulin resistance. Inactivation of ALMS1 directly inhibits insulin-mediated glucose absorption in the white adipose tissue and induces severe insulin resistance, which leads to type 2 diabetes, accelerated nonalcoholic liver disease, and fibrosis. These phenotypes were reversed by specific adipocyte-ALMS1 reactivation in vivo. Subsequently, ALMS1 was found to bind to protein kinase C-α (PKCα) in the adipocyte, and upon insulin signaling, PKCα is released from ALMS1. α-Helices in the kinase domain of PKCα were therefore screened to identify a peptide sequence that interfered with the ALMS1-PKCα protein interaction. When incubated with cultured human adipocytes, the stapled peptide termed PATAS, for Peptide derived of PKC Alpha Targeting AlmS, triggered insulin-independent glucose absorption, de novo lipogenesis, and cellular glucose utilization. In vivo, PATAS reduced whole-body insulin resistance, and improved glucose intolerance, fasting glucose, liver steatosis, and fibrosis in rodents. Thus, PATAS represents a novel first-in-class peptide that targets the adipocyte to ameliorate insulin resistance and its associated comorbidities.


Subject(s)
Alstrom Syndrome , Biological Products , Diabetes Mellitus, Type 2 , Insulin Resistance , Alstrom Syndrome/genetics , Fibrosis , Glucose/metabolism , Humans , Insulin/pharmacology , Insulin Resistance/physiology , Protein Kinase C-alpha
5.
iScience ; 25(5): 104175, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35479411

ABSTRACT

BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth.

6.
Mol Oncol ; 16(13): 2518-2536, 2022 07.
Article in English | MEDLINE | ID: mdl-34919781

ABSTRACT

Androgen receptor (AR) signaling remains the key therapeutic target in the management of hormone-naïve-advanced prostate cancer (PCa) and castration-resistant PCa (CRPC). Recently, landmark molecular features have been reported for CRPC, including the expression of constitutively active AR variants that lack the ligand-binding domain. Besides their role in CRPC, AR variants lead to the expression of genes involved in tumor progression. However, little is known about the specificity of their mode of action compared with that of wild-type AR (AR-WT). We performed AR transcriptome analyses in an androgen-dependent PCa cell line as well as cross-analyses with publicly available RNA-seq datasets and established that transcriptional repression capacity that was marked for AR-WT was pathologically lost by AR variants. Functional enrichment analyses allowed us to associate AR-WT repressive function to a panel of genes involved in cell adhesion and epithelial-to-mesenchymal transition. So, we postulate that a less documented AR-WT normal function in prostate epithelial cells could be the repression of a panel of genes linked to cell plasticity and that this repressive function could be pathologically abrogated by AR variants in PCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Androgens , Cell Line, Tumor , Cell Plasticity , Gene Expression Regulation, Neoplastic , Humans , Male , Prostate/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism
7.
Biochem Mol Biol Educ ; 49(5): 707-719, 2021 09.
Article in English | MEDLINE | ID: mdl-34080750

ABSTRACT

Proteopedia (proteopedia.org) is an open resource to explore the structure-function relationship of proteins and other biomolecules. This guide provides practical advice on how to incorporate Proteopedia into teaching the structure and function of proteins and other biomolecules. For 11 activities, we discuss desired outcomes, setting expectations, preparing students for the tasks, using resources within Proteopedia, and evaluating student work. We point out features of Proteopedia that make it especially suitable for teaching and give examples of how to avoid common pitfalls.


Subject(s)
Proteins , Students , Humans , Teaching
8.
Magn Reson (Gott) ; 2(2): 795-813, 2021.
Article in English | MEDLINE | ID: mdl-37905223

ABSTRACT

Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.

9.
Chembiochem ; 22(4): 657-661, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32986915

ABSTRACT

Conjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.


Subject(s)
Fluorine/chemistry , Halogenation , Intercellular Signaling Peptides and Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Humans , Micelles
11.
Nucleic Acids Res ; 48(19): 11199-11213, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32990725

ABSTRACT

The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.


Subject(s)
DNA/metabolism , Mediator Complex Subunit 1 , Receptors, Calcitriol , Retinoid X Receptor alpha , Humans , Ligands , Mediator Complex Subunit 1/chemistry , Mediator Complex Subunit 1/metabolism , Protein Binding , Protein Domains , Protein Multimerization , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/metabolism
12.
Chem Sci ; 12(3): 1080-1089, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-34163874

ABSTRACT

Intrinsically disordered proteins (IDPs) constitute a large portion of "Dark Proteome" - difficult to characterize or yet to be discovered protein structures. Here we used conformationally constrained α-methylated amino acids to bias the conformational ensemble in the free unstructured activation domain of transcriptional coactivator ACTR. Different sites and patterns of substitutions were enabled by chemical protein synthesis and led to distinct populations of α-helices. A specific substitution pattern resulted in a substantially higher binding affinity to nuclear coactivator binding domain (NCBD) of CREB-binding protein, a natural binding partner of ACTR. The first X-ray structure of the modified ACTR domain - NCBD complex visualized a unique conformation of ACTR and confirmed that the key α-methylated amino acids are localized within α-helices in the bound state. This study demonstrates a strategy for characterization of individual conformational states of IDPs.

14.
Nucleic Acids Res ; 47(7): 3607-3618, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30767014

ABSTRACT

The integration of the retroviral genome into the chromatin of the infected cell is catalysed by the integrase (IN)•viral DNA complex (intasome). This process requires functional association between the integration complex and the nucleosomes. Direct intasome/histone contacts have been reported to modulate the interaction between the integration complex and the target DNA (tDNA). Both prototype foamy virus (PFV) and HIV-1 integrases can directly bind histone amino-terminal tails. We have further investigated this final association by studying the effect of isolated histone tails on HIV-1 integration. We show here that the binding of HIV-1 IN to a peptide derived from the H4 tail strongly stimulates integration catalysis in vitro. This stimulation was not observed with peptide tails from other variants or with alpha-retroviral (RAV) and spuma-retroviral PFV integrases. Biochemical analyses show that the peptide tail induces both an increase in the IN oligomerization state and affinity for the target DNA, which are associated with substantial structural rearrangements in the IN carboxy-terminal domain (CTD) observed by NMR. Our data indicate that the H4 peptide tail promotes the formation of active strand transfer complexes (STCs) and support an activation step of the incoming intasome at the contact of the histone tail.


Subject(s)
HIV Integrase/genetics , HIV-1/genetics , Histones/genetics , Virus Integration/genetics , Catalysis , Chromatin/genetics , Chromatin/virology , Genome, Viral/genetics , HIV-1/pathogenicity , Host-Pathogen Interactions/genetics , Humans , Nucleosomes/genetics , Nucleosomes/virology , Spumavirus/genetics
15.
J Org Chem ; 84(6): 3100-3120, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30777755

ABSTRACT

Fluorinated proline derivatives have found diverse applications in areas ranging from medicinal chemistry over structural biochemistry to organocatalysis. Depending on the stereochemistry of monofluorination at the proline 3- or 4-position, different effects on the conformational properties of proline (ring pucker, cis/ trans isomerization) are introduced. With fluorination at both 3- and 4-positions, matching or mismatching effects can occur depending on the relative stereochemistry. Here we report, in full, the syntheses and conformational properties of three out of the four possible 3,4-difluoro-l-proline diastereoisomers. The yet unreported conformational properties are described for (3 S,4 S)- and (3 R,4 R)-difluoro-l-proline, which are shown to bias ring pucker and cis/ trans ratios on the same order of magnitude as their respective monofluorinated progenitors, although with significantly faster amide cis/ trans isomerization rates. The reported analogues thus expand the scope of available fluorinated proline analogues as tools to tailor proline's distinct conformational and dynamical properties, allowing for the interrogation of its role in, for instance, protein stability or folding.


Subject(s)
Proline/chemistry , Proline/chemical synthesis , Halogenation , Molecular Conformation , Proline/analogs & derivatives , Stereoisomerism
16.
Am J Hum Genet ; 104(2): 319-330, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30639322

ABSTRACT

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Point Mutation , Transcription Factors/genetics , Alleles , Animals , Child , Child, Preschool , Developmental Disabilities/pathology , Female , Humans , Infant , Intellectual Disability/pathology , Male , Mice , Syndrome , Transcription Factors/chemistry , Transcription Factors/metabolism
17.
Mol Cell Endocrinol ; 481: 44-52, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30476562

ABSTRACT

Retinoid X Receptors (RXRs) act as dimer partners for several nuclear receptors including itself, binding to genomic DNA response elements and regulating gene transcription with cell and gene specificity. As homodimers, RXRs bind direct repeats of the half-site (A/G)G(G/T)TCA separated by 1 nucleotide (DR1) and little variability of this consensus site is observed for natural DR1s. However, these variations are responsible of the modulation of RXR receptors function through differential binding affinity and conformational changes. To further our understanding of the molecular mechanisms underlying RXR-DNA interactions, we examined how RXR DBDs bind to different DR1s using thermodynamics, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. We show that the half-site sequences modulate the binding cooperativity that results from the protein-protein contacts between the two DBDs. Chemical shifts perturbation NMR experiments revealed that sequence variations in half-sites induce changes that propagate from the protein-DNA interface to the dimerization interface throughout the DBD fold.


Subject(s)
DNA/metabolism , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Animals , Binding Sites , Calorimetry , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains
18.
Chem Sci ; 9(25): 5594-5599, 2018 Jul 07.
Article in English | MEDLINE | ID: mdl-30061991

ABSTRACT

Discovering molecular probes that specifically recognize distinct amyloid structures is highly important for physiological studies of protein-misfolding diseases as well as for the development of diagnostic reagents and inhibitors of amyloid self-assembly. Here, we demonstrate an approach that allows for identification of N-methylated peptides that are specific binders for a particular amyloid fiber subtype (or polymorph). Protein design and chemical synthesis were used to produce covalently tethered amyloid analogues with molecular masses approaching 24 kDa and containing nine copies of an amyloidogenic peptide. Such engineered constructs served as a molecular testing platform to evaluate the aggregation properties and solubility as a function of N-methylation pattern. An advantage of the method is the possibility of biophysical characterization of amyloid constructs in solution.

19.
Chem Commun (Camb) ; 54(40): 5118-5121, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29717724

ABSTRACT

Monofluorination at the proline 4-position results in conformational effects, which is exploited for a range of applications. However, this conformational distortion is a hindrance when the natural proline conformation is important. Here we introduce (3S,4R)-3,4-difluoroproline, in which the individual fluorine atoms instil opposite conformational effects, as a suitable probe for fluorine NMR studies.

20.
Biomolecules ; 7(2)2017 06 19.
Article in English | MEDLINE | ID: mdl-28629183

ABSTRACT

The human androgen receptor (AR) is a ligand inducible transcription factor that harbors an amino terminal domain (AR-NTD) with a ligand-independent activation function. AR-NTD is intrinsically disordered and displays aggregation properties conferred by the presence of a poly-glutamine (polyQ) sequence. The length of the polyQ sequence as well as its adjacent sequence motifs modulate this aggregation property. AR-NTD also contains a conserved KELCKAVSVSM sequence motif that displays an intrinsic property to form amyloid fibrils under mild oxidative conditions. As peptide sequences with intrinsic oligomerization properties are reported to have an impact on the aggregation of polyQ tracts, we determined the effect of the KELCKAVSVSM on the polyQ stretch in the context of the AR-NTD using atomic force microscopy (AFM). Here, we present evidence for a crosstalk between the amyloidogenic properties of the KELCKAVSVSM motif and the polyQ stretch at the AR-NTD.


Subject(s)
Amyloid/chemistry , Peptides/chemistry , Receptors, Androgen/chemistry , Amino Acid Sequence , Amyloid/metabolism , Polymerization , Receptors, Androgen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...