Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nature ; 629(8010): 184-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38600378

ABSTRACT

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glucocorticoids , Inflammation , Macrophages , Mitochondria , Succinates , Animals , Female , Humans , Male , Mice , Anti-Inflammatory Agents/pharmacology , Carboxy-Lyases/metabolism , Carboxy-Lyases/antagonists & inhibitors , Citric Acid Cycle/drug effects , Citric Acid Cycle/genetics , Cytokines/immunology , Cytokines/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Receptors, Glucocorticoid/metabolism , Succinates/metabolism , Enzyme Activation/drug effects
2.
Ann Rheum Dis ; 83(4): 518-528, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38071515

ABSTRACT

OBJECTIVES: Osteoclasts (OCs) are myeloid-derived multinucleated cells uniquely able to degrade bone. However, the exact nature of their myeloid precursors is not yet defined. METHODS: CD11c-diphtheria toxin receptor (CD11cDTR) transgenic mice were treated with diphtheria toxin (DT) or phosphate buffered saline (PBS) during serum transfer arthritis (STA) and human tumour necrosis factor transgenic (hTNFtg) arthritis and scored clinically and histologically. We measured cytokines in synovitis by quantitative polymerase chain reaction (qPCR). We performed ovariectomy in CD11cDTR mice treated with PBS or DT. We analysed CD11cDTR, CD11c-Cre/CX3CR1-STOP-DTR and Zbtb46-DTR-treated mice with DT using histomorphometry and OC of CD11c and Zbtb46 fate reporter mice by fluorescent imaging. We sorted murine and human OC precursors and stimulated them with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) to generate OCs. RESULTS: Targeting CD11c+ cells in vivo in models of inflammatory arthritis (STA and hTNFtg) ameliorates arthritis by reducing inflammatory bone destruction and OC generation. Targeting CD11c-expressing cells in unchallenged mice removes all OCs in their long bones. OCs do not seem to be derived from CD11c+ cells expressing CX3CR1+, but from Zbtb46+conventional dendritic cells (cDCs) as all OCs in Zbtb46-Tomato fate reporter mice are Tomato+. In line, administration of DT in Zbtb46-DTR mice depletes all OCs in long bones. Finally, human CD1c-expressing cDCs readily differentiated into bone resorbing OCs. CONCLUSION: Taken together, we identify DCs as important OC precursors in bone homeostasis and inflammation, which might open new avenues for therapeutic interventions in OC-mediated diseases.


Subject(s)
Arthritis , Osteoclasts , Female , Mice , Humans , Animals , Cytokines/metabolism , Cell Differentiation , Arthritis/metabolism , Dendritic Cells/metabolism , RANK Ligand/metabolism
3.
Arthritis Rheumatol ; 76(4): 531-540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984422

ABSTRACT

OBJECTIVE: We analyzed the impact of amino acid (AA) availability on the inflammatory response in arthritis. METHODS: We stimulated rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) with tumor necrosis factor (TNF) in the presence or absence of proteinogenic AAs and measured their response by QuantSeq 3' messenger RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. Signal transduction events were determined by Western blot. We performed K/BxN serum transfer arthritis in mice receiving a normal and a low-protein diet and analyzed arthritis clinically and histologically. RESULTS: Deprivation of AAs decreased the expression of a specific subset of genes, including the chemokines CXCL10, CCL2, and CCL5 in TNF-stimulated FLSs. Mechanistically, the presence of AAs was required for the TNF-induced activation of an interferon regulatory factor 1 (IRF1)-STAT1 signaling circuit that drives the expression of chemotactic factors. The expression of IRF1 and the IRF1-dependent gene set in FLSs was highly correlated with the presence of inflammatory cells in human RA, emphasizing the important role of this AA-dependent pathway in inflammatory cell recruitment to the synovial tissue. Finally, we show that mice receiving a low-protein diet expressed less IRF1 in the inflamed synovium and consequently developed reduced clinical and histologic signs of arthritis. CONCLUSION: AA deprivation reduces the severity of arthritis by suppressing the expression of IRF1-STAT1-driven chemokines, which are crucial for leukocyte recruitment to the arthritic joint. Overall, our study provides novel insights into critical determinants of inflammatory arthritis and may pave the way for dietary intervention trials in RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Mice , Animals , Synoviocytes/metabolism , Amino Acids/metabolism , Arthritis, Rheumatoid/genetics , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL10/metabolism , Amines/metabolism , Fibroblasts/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Cells, Cultured
4.
Front Immunol ; 13: 695576, 2022.
Article in English | MEDLINE | ID: mdl-35514976

ABSTRACT

Aberrant innate immune responses to the gut microbiota are causally involved in the pathogenesis of inflammatory bowel diseases (IBD). The exact triggers and main signaling pathways activating innate immune cells and how they modulate adaptive immunity in IBD is still not completely understood. Here, we report that the PI3K/PTEN signaling pathway in dendritic cells enhances IL-6 production in a model of DSS-induced colitis. This results in exacerbated Th1 cell responses and increased mortality in DC-specific PTEN knockout (PTENΔDC) animals. Depletion of the gut microbiota using antibiotics as well as blocking IL-6R signaling rescued mortality in PTENΔDC mice, whereas adoptive transfer of Flt3L-derived PTEN-/- DCs into WT recipients exacerbated DSS-induced colitis and increased mortality. Taken together, we show that the PI3K signaling pathway in dendritic cells contributes to disease pathology by promoting IL-6 mediated Th1 responses.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Dendritic Cells , Dextran Sulfate/adverse effects , Disease Models, Animal , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
5.
J Cancer ; 13(7): 2271-2280, 2022.
Article in English | MEDLINE | ID: mdl-35517419

ABSTRACT

Background: Cluster of differentiation 98 heavy chain (CD98hc) is a transmembrane protein, which functions both as a coreceptor of ß-integrins, enhancing intracellular integrin-dependent downstream signaling, and as a transporter of branched-chain and aromatic amino acids. As such, it is pivotal in cell cycle regulation and protection of oxidative, nutritional and DNA replication stress. Overexpression of CD98hc occurs widely in cancer cells and is associated with poor clinical prognosis. The role of CD98hc in pancreatic cancer remains to be elucidated. The aim of this study was to determine the expression of CD98hc in pancreatic ductal adenocarcinoma and to define its potential functional role in cancer cell biology. Methods: Immunohistochemical staining for CD98hc was performed on 222 tissue samples of patients with pancreatic ductal adenocarcinoma. The pancreatic cancer cell lines PANC-1 and BxPC-3 were used to determine the effect of CD98hc expression on cancer cell behavior using cell adhesion, cell trans-migration and cell spreading assays. Flow cytometry was performed to study the rate of apoptosis after detachment or serum starvation. shRNA-lentiviral constructs were used to knock down or reconstitute full length or mutated CD98hc. Results: Up to 20% of pancreatic ductal adenocarcinomas express CD98hc in the acinar cells (13%) and islet cells (20%) embedded in tumor tissue. Although expression of CD98hc in tumor tissue was not associated with a particular tumor stage or grade, our data show a trend towards longer overall survival of pancreatic cancer patients without CD98hc expression as compared to those with immunohistochemical positivity. In vitro downregulation of CD98hc in the pancreatic cancer cell lines PANC-1 and BxPC-3 significantly inhibits cell proliferation (p<0.05), self-renewal (p<0.05) and anchorage-independent growth (p<0.05). Conclusion: CD98hc is expressed in a remarkable percentage of pancreatic ductal adenocarcinomas. Due to its important role in cell behavior and malignant cell transformation, it may be a promising molecular target for potential new therapeutic approaches in pancreatic cancer in the future.

6.
Palliat Med ; 36(3): 540-548, 2022 03.
Article in English | MEDLINE | ID: mdl-35184630

ABSTRACT

BACKGROUND: Parenteral nutrition is controversial in patients with advanced cancer. Nevertheless, this treatment is common practice near the end of life. AIM: We aimed to identify factors which were associated with the outcome of patients on parenteral nutrition at an academic tertiary palliative care unit. DESIGN: In this retrospective cohort study patients were assigned to two groups according to parenteral nutrition treatment. Inferential statistics were used to assess whether the dynamics of laboratory variables over 2 weeks of parenteral nutrition were associated with survival. SETTING/PARTICIPANTS: Patients admitted to the Department of Palliative Medicine at the Medical University of Vienna between 2016 and 2018 were included in this study. RESULTS: Of 443 patients, 113 patients received parenteral nutrition. Patients had a lower body mass index, lower levels of bilirubin, γ-glutamyltransferase, alkaline phosphatase, and were of younger age compared to patients which did not receive parenteral nutrition. No difference in survival as measured from admission to death was found when comparing the two groups. Levels for γ-glutamyltransferase, alkaline phosphatase, and C-reactive protein significantly increased during 2 weeks of parenteral nutrition. Among patients with parenteral nutrition, an increase in C-reactive protein or white blood cell count levels was associated with lower survival. CONCLUSION: Patients who responded with an increase of C-reactive protein or white blood cell count during 2 weeks after reinitiation or start of parenteral nutrition had a worse survival. Our findings might support clinicians and patients in their decision to forgo parenteral nutrition in a palliative care setting.


Subject(s)
C-Reactive Protein , Neoplasms , Humans , Leukocyte Count , Neoplasms/complications , Neoplasms/therapy , Palliative Care , Parenteral Nutrition , Prognosis , Retrospective Studies
7.
Nutrients ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215419

ABSTRACT

BACKGROUND: Parenteral nutrition (PN) is frequently administered in palliative care patients suffering from cachexia. The evidence regarding the use of PN in terminally ill patients is scarce. Routine laboratory parameters might help to decide whether to start or forgo PN, which could decrease overtreatment at the end of life. Kidney failure was frequently associated with survival. However, a relation between kidney function parameters and parenteral nutrition has not been observed thus far. The aim of this retrospective cohort study was to analyze kidney function parameters in palliative care patients under PN, as well as the relation between these parameters and overall survival. METHODS: Patients who were admitted to the Department of Palliative Medicine at the Medical University of Vienna were screened for PN treatment. Whether kidney function parameters at baseline or their dynamics over the course of two weeks were associated with survival was assessed with descriptive and interferential statistics. RESULTS: In total, 113 of 443 palliative care patients were administered parenteral nutrition for the first time. The overall survival (OS) for all patients with increased kidney function parameters at baseline was lower (creatinine: hazard ratio (HR) = 1.808, p < 0.001; urea: HR = 1.033, p < 0.001; uric acid HR = 1.055, p = 0.015). No significant increase in creatinine blood levels was observed in the first 2 weeks after the initiation of PN when compared to the non-PN group (p = 0.86). However, if creatinine blood levels increased within the PN group, lower overall survival was found (HR = 2.046, p = 0.007). CONCLUSION: Increased kidney function parameters, such as creatinine, urea and uric acid, might be used as negative prognostic markers in palliative care patients under PN. Moreover, an increase in creatinine during the administration of parenteral nutrition in the first 2 weeks is linked to worse outcomes. These findings may help future studies to establish objective markers for clinicians to determine whether to start or end PN in palliative cancer patients and decrease potential overtreatment at the end of life.


Subject(s)
Palliative Care , Parenteral Nutrition , Humans , Kidney , Parenteral Nutrition, Total , Retrospective Studies
8.
Cell Rep ; 38(8): 110420, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196494

ABSTRACT

Dendritic cells (DCs) induce peripheral T cell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral T cell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ T cell expansion, less regulatory T cells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ T cells into Tregs in vitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.


Subject(s)
B7-H1 Antigen , Encephalomyelitis, Autoimmune, Experimental , Janus Kinase 1 , T-Lymphocytes, Regulatory , Animals , Autoimmunity , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Dendritic Cells/metabolism , Immune Tolerance , Janus Kinase 1/immunology , Janus Kinase 1/metabolism , Mice , Peripheral Tolerance
9.
Cancer Manag Res ; 13: 6249-6261, 2021.
Article in English | MEDLINE | ID: mdl-34393517

ABSTRACT

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and poses a challenge to the treating clinician. With the emergence of genomic profiling technologies, circulating tumor DNA (ctDNA) is increasingly recognized as a versatile biomarker for risk stratification and disease monitoring. We aimed to compare two commercially available NGS panels in a cohort of patients with advanced PDAC undergoing palliative chemotherapy. METHODS: CtDNA was isolated with a magnetic bead-based protocol from two consecutive blood samples before and during chemotherapy in 21 patients with PDAC. Mutations were assessed by using a panel covering 15 (GP15) or 50 (GP50) cancer-associated genes. Results were compared to tumor tissue (GP15), if available. RESULTS: Isolation of ctDNA resulted in a high mean value of 1.9 ng/µL (total volume of ~40 µL). Although the same number of patients were positive for at least one mutation (76%), the most commonly mutated oncogene in PDAC, KRAS, was detectable in an additional 25% of all patients with the GP15 panel due to a higher coverage. The genomic concordance rate between tissue DNA and ctDNA analyses was 65.22%. DISCUSSION: Our study demonstrates the feasibility of an NGS-based approach for ctDNA analysis and underlines the importance of using a disease-specific panel with a sufficiently high coverage.

10.
FEBS J ; 288(12): 3694-3714, 2021 06.
Article in English | MEDLINE | ID: mdl-33460504

ABSTRACT

Macrophages represent the first line of defence in innate immune responses and additionally serve important functions for the regulation of host inflammation and tissue homeostasis. The M1/M2 model describes the two extremes of macrophage polarization states, which can be induced by multiple stimuli, most notably by LPS/IFN-γ and IL-4/IL-13. Historically, the expression of two genes encoding for enzymes, which use the same amino acid as their substrate, iNOS and ARG1, has been used to define classically activated M1 (iNOS) and alternatively activated M2 (ARG1) macrophages. This 'arginine dichotomy' has recently become a matter of debate; however, in parallel with the emerging field of immunometabolism there is accumulating evidence that these two enzymes and their related metabolites are fundamentally involved in the intrinsic regulation of macrophage polarization and function. The aim of this review is to highlight recent advances in macrophage biology and immunometabolism with a specific focus on amino acid metabolism and their related metabolic pathways: iNOS/ARG1 (arginine), TCA cycle and OXPHOS (glutamine) as well as the one-carbon metabolism (serine, glycine).


Subject(s)
Arginase/metabolism , Arginine/metabolism , Glutamine/metabolism , Glycine/immunology , Macrophages/metabolism , Nitric Oxide Synthase Type II/metabolism , Serine/metabolism , Arginase/genetics , Arginase/immunology , Arginine/immunology , Cell Differentiation/drug effects , Citric Acid Cycle/genetics , Citric Acid Cycle/immunology , Gene Expression Regulation , Glutamine/immunology , Glycine/metabolism , Humans , Immunity, Innate , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/classification , Macrophages/drug effects , Macrophages/immunology , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Nitric Oxide/immunology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Oxidative Phosphorylation , Serine/immunology
11.
Nat Metab ; 2(12): 1427-1442, 2020 12.
Article in English | MEDLINE | ID: mdl-33199895

ABSTRACT

Adipose tissue macrophages (ATMs) display tremendous heterogeneity depending on signals in their local microenvironment and contribute to the pathogenesis of obesity. The phosphoinositide 3-kinase (PI3K) signalling pathway, antagonized by the phosphatase and tensin homologue (PTEN), is important for metabolic responses to obesity. We hypothesized that fluctuations in macrophage-intrinsic PI3K activity via PTEN could alter the trajectory of metabolic disease by driving distinct ATM populations. Using mice harbouring macrophage-specific PTEN deletion or bone marrow chimeras carrying additional PTEN copies, we demonstrate that sustained PI3K activity in macrophages preserves metabolic health in obesity by preventing lipotoxicity. Myeloid PI3K signalling promotes a beneficial ATM population characterized by lipid uptake, catabolism and high expression of the scavenger macrophage receptor with collagenous structure (MARCO). Dual MARCO and myeloid PTEN deficiencies prevent the generation of lipid-buffering ATMs, reversing the beneficial actions of elevated myeloid PI3K activity in metabolic disease. Thus, macrophage-intrinsic PI3K signalling boosts metabolic health by driving ATM programmes associated with MARCO-dependent lipid uptake.


Subject(s)
Adipose Tissue/metabolism , Lipid Metabolism/genetics , Macrophages/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Bone Marrow Transplantation , Cell Differentiation , Chimera , Glucose Tolerance Test , Lipidomics , Macrophages/pathology , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Receptors, Immunologic/genetics , Signal Transduction/genetics
12.
Ther Adv Med Oncol ; 12: 1758835920928635, 2020.
Article in English | MEDLINE | ID: mdl-32922518

ABSTRACT

BACKGROUND: Targeted therapies offer novel opportunities to explore biomarkers based on their mode of action. Taking this into consideration, we evaluated six angiogenesis-related proteins as potential predictive biomarkers, which expression might predict the benefit of bevacizumab treatment in patients with metastatic colorectal cancer (mCRC). METHODS: This was a phase II multicenter, two-armed, randomized study, in which patients with mCRC were treated with XELIRI (capecitabine and irinotecan) plus bevacizumab followed by XELOX (capecitabine and oxaliplatin) plus bevacizumab (Arm A) or the reverse sequence (Arm B). Tissue expression level of six prespecified candidates [microvessel density assessed by CD31, PTEN, αV integrin, CD98hc, uPAR and NRP-1] was analyzed via immunohistochemistry. The prognostic impact on survival was quantified using the Cox regression model. The predictive potential for benefit from Arm A versus Arm B treatment was investigated by fitting an interaction between the biomarkers and treatment assignment within a multivariable Cox model. RESULTS: In total, 74 out of 126 patients were included in the analysis. The expression of PTEN, αV integrin, uPAR and NRP-1 was not associated with progression-free survival (PFS) or overall survival (OS). For the first time, we identified that patients with tumors expressing CD98hc had a longer PFS than patients without CD98hc-expression (p = 0.032). More importantly, and in accordance with previous studies, low microvessel density was found to be associated with a reduced PFS [adjusted HR per doubling of CD31-expression (p = 0.53, 95% confidence interval: 0.30-0.95, p = 0.034)]. CONCLUSIONS: These results can contribute to the development of a personalized strategy for the treatment of mCRC with bevacizumab.

13.
J Clin Med ; 9(6)2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32517383

ABSTRACT

The nucleoside trifluridine/tipiracil (TAS-102) and the multikinase inhibitor regorafenib significantly improved survival in metastatic colorectal cancer patients (mCRC). Both treatments are characterized by different treatment-related adverse events but detailed analyses of predictive side effects are rare. In this retrospective, observational, real-life study, clinical data on mCRC patients treated with trifluridine/tipiracil or regorafenib at the Medical University of Vienna, Austria and the University Hospital Zurich, Switzerland were collected. The correlation between adverse events and response or survival rates were calculated performing Fisher's exact test and log-rank test, respectively. Common adverse events of any grade included fatigue (52%), nausea/vertigo (34%), anemia (26%), and leukopenia (22%) in trifluridine/tipiracil patients and fatigue (42%), hand-foot-skin syndrome (36%) and hoarseness (34%) in patients upon regorafenib treatment. In trifluridine/tipiracil patients the prevalence of leukopenia (p = 0.044) and weight loss (p = 0.044) was prognostic, whereas leukopenia (p = 0.044) and neutropenia (p = 0.043) predicted PFS. The disease control rate was not significantly affected. In regorafenib-treated patients, the prevalence of nausea (p = 0.001) was prognostic, while oral mucositis predicted PFS (p = 0.032) as well as the DCR (p = 0.039). In conclusion, we underline the efficacy of trifluridine/tipiracil and regorafenib in the real-life setting. We describe predictive adverse events like neutropenia/leukopenia, which might be used as surrogate marker in anticancer therapy beyond second line treatment.

14.
Theranostics ; 10(11): 5074-5089, 2020.
Article in English | MEDLINE | ID: mdl-32308769

ABSTRACT

In tumor engineering, 3D approaches are used to model components of the tumor microenvironment and to test new treatments. Pancreatic cancers are a cancer of substantial unmet need and survival rates are lower compared to any other cancer. Bioengineering techniques are increasingly applied to understand the unique biology of pancreatic tumors and to design patient-specific models. Here we summarize how extracellular and cellular elements of the pancreatic tumor microenvironment and their interactions have been studied in 3D cell cultures. We review selected clinical trials, assess the benefits of therapies interfering with the tumor microenvironment and address their limitations and future perspectives.


Subject(s)
Pancreatic Neoplasms/pathology , Spheroids, Cellular/pathology , Tissue Engineering/methods , Animals , Cell Culture Techniques , Disease Models, Animal , Humans , Tumor Microenvironment
15.
J Clin Med ; 9(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121198

ABSTRACT

BACKGROUND: New chemotherapy regimens for the treatment of metastatic pancreatic cancer have changed the therapy paradigm. We aimed to assess their impact on the treatment landscape and clinical outcome at our academic institution. METHODS: In this single institutional posthoc registry analysis, we assessed characteristics and survival rates from all patients with locally advanced and metastatic pancreatic cancer who started a systemic treatment between 01/2011 and 12/2017. Survival analyses were performed by Kaplan-Meier and Cox proportional hazards model. RESULTS: A total of 301 patients started a systemic treatment in the observation period. In the first line treatment, we observed a shift from the four different main regimens (gemcitabine/nab-paclitaxel, modified FOLFIRINOX, gemcitabine/oxaliplatin +/- erlotinib or gemcitabine alone) to gemcitabine/nab-paclitaxel and modified FOLFIRINOX that add up to more than 80% of administered first line treatments in each of the time cohorts (2011-2013 vs. 2014-2017). The rate for first line modified FOLFIRINOX treatment was balanced between the two groups (19% and 15%). Median overall survival differed significantly between the two time cohorts (8.89 versus 11.9 months, p = 0.035). Survival rates for different first to second line treatment sequences (modified FOLFIRINOX to gemcitabine/nab-paclitaxel, gemcitabine/nab-paclitaxel to fluoropyrimidines plus nanoliposomal irinotecan, or gemcitabine/nab-paclitaxel to fluoropyrimidines plus oxaliplatin) were not significantly different and median overall survival ranged from 14.27 to 15.64 months. CONCLUSION: Our study provides real-world evidence for the effectiveness of the new chemotherapy regimens and underscores the importance of the choice of the front-line regimen when considering different sequencing strategies.

16.
Nat Commun ; 11(1): 431, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969567

ABSTRACT

Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.


Subject(s)
Arginine/metabolism , Giant Cells/immunology , Animals , Arthritis/genetics , Arthritis/metabolism , Arthritis/physiopathology , Bone Remodeling , Citric Acid Cycle , Female , Giant Cells/cytology , Humans , Interleukin-4/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/genetics , RANK Ligand/metabolism
17.
ESMO Open ; 4(4): e000538, 2019.
Article in English | MEDLINE | ID: mdl-31423337

ABSTRACT

BACKGROUND: High-throughput genomic profiling of tumour specimens facilitates the identification of individual actionable mutations which could be used for individualised targeted therapy. This approach is becoming increasingly more common in the clinic; however, the interpretation of results from molecular profiling tests and efficient guiding of molecular therapies to patients with advanced cancer offer a significant challenge to the oncology community. EXPERIMENTAL DESIGN: MONDTI is a precision medicine platform for molecular characterisation of metastatic solid tumours to identify actionable genomic alterations. From 2013 to 2016, comprehensive molecular profiles derived from real-time biopsy specimens and archived tumour tissue samples of 295 patients were performed. Results and treatment suggestions were discussed within multidisciplinary tumour board meetings. RESULTS: The mutational profile was obtained from 293 (99%) patients and a complete immunohistochemical (IHC) and cytogenetic profile was obtained in 181 (61%) and 188 (64%) patients. The most frequent cancer types were colorectal cancer (12%), non-Hodgkin's lymphomas (9.8%) and head and neck cancers (7.8%). The most commonly detected mutations were TP53 (39%), KRAS (19%) and PIK3CA (9.5%), whereas ≥1 mutation were identified in 217 (74%) samples. Regarding the results for IHC testing, samples were positive for phospho-mammalian target of rapamycin (phospho-mTOR) (71%), epidermal growth factor receptor (EGFR) (68%), mesenchymal epithelial transition (MET) (56%) and/or platelet-derived growth factor alpha (PDGFRα)-expression (48%). Of the 288 tumour samples with one or more genetic alteration detected, 160 (55.6%) targeted therapy recommendations through 67 multidisciplinary tumour board meetings were made; in 69 (24%) cases, an individual treatment concept was initiated. CONCLUSIONS: The results reveal that the open concept for all solid tumours characterised for molecular profile and immunotherapy could not only match individualised treatment concepts at a high rate but also underscores the challenges encountered when offering molecularly matched therapies to a patient population with an advanced stage cancer.

18.
Ther Adv Med Oncol ; 11: 1758835919853196, 2019.
Article in English | MEDLINE | ID: mdl-31360237

ABSTRACT

BACKGROUND: Nanoliposomal irinotecan (nal-IRI) plus 5-fluorouracil/leucovorin (5-FU/LV) is a novel treatment option for gemcitabine-pretreated metastatic pancreatic adenocarcinoma (PAC) patients, but real-world evidence is rare. Our aim was to determine the effectiveness and tolerability of this regimen in advanced PAC patients and to compare it with oxaliplatin plus fluoropyrimidines in the second-line setting after failure of gemcitabine. METHODS: This is a retrospective single-center analysis of all patients who have been treated with nal-IRI plus 5-FU/LV. To compare its effectiveness with other second-line treatment options, all patients who had received oxaliplatin plus fluoropyrimidines after gemcitabine-based chemotherapy were also eligible for analysis. RESULTS: Fifty-two patients were treated with nal-IRI plus 5-FU/LV between April 2016 and August 2018. The median progression-free survival (PFS) was 3.84 months and the median overall survival (OS) was 6.79 months. Median OS from the beginning of the treatment for advanced disease was 19.9 months. Median PFS in patients that received nal-IRI plus 5-FU/LV as second-line treatment after gemcitabine-based chemotherapy was 4.49 months whereas median PFS in a matched cohort of patients treated with oxaliplatin plus fluoropyrimidines was 3.44 months (p = 0.007). Between these two groups the median OS of patients with CA 19-9 levels above the statistical median (⩾772.8 kU/l) differed significantly (9.33 versus 6.18 months, p = 0.038). CONCLUSION: Our data confirms the effectiveness of nal-IRI plus 5-FU/LV treatment as a well-tolerated regimen in the treatment of advanced PAC and extends available data on its use as a second-line treatment option when compared with oxaliplatin plus fluoropyrimidines.

19.
Oncotarget ; 10(9): 942-952, 2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30847023

ABSTRACT

BACKGROUND: The concept of personalized medicine defines a promising approach in cancer care. High-throughput genomic profiling of tumor specimens allows the identification of actionable mutations that potentially lead to tailored treatment for individuals' benefit. The aim of this study was to prove efficacy of a personalized treatment option in solid tumor patients after failure of standard treatment concepts. RESULTS: Final analysis demonstrates that 34 patients (62%) had a longer PFS upon experimental treatment (PFS1) when compared to previous therapy (PFS0); PFS ratio > 1.0 (p = 0.002). The median PFS under targeted therapy based on molecular profiling (PFS1) was 112 days (quartiles 66/201) and PFS0 = 61 days (quartiles 51/92; p = 0.002). Of the 55 patients, 31 (56%) showed disease control (DCR), consisting of 2 (4%) patients which achieved a complete remission, 14 (25%) patients with a partial remission and 15 (27%) patients who had a stabilization of disease. Median OS from start of experimental therapy was 348 days (quartiles 177/664). CONCLUSION: The prospective trial EXACT suggests that treatment based on real-time molecular tumor profiling leads to superior clinical benefit. MATERIALS AND METHODS: In this prospective clinical phase II trial, 55 cancer patients, after failure of standard treatment options, aimed to achieve a longer progression-free survival on the experimental treatment based on the individual's molecular profile (PFS1) when compared to the last treatment given before (PFS0). The personalized medicine approach was conceived to be clinical beneficial for patients who show a PFS ratio (PFS 1/PFS0) of > 1.0.

20.
Transl Oncol ; 12(1): 15-23, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30245304

ABSTRACT

Stratification of patients with pancreatic ductal adenocarcinoma (PDAC) remains a key challenge in the field of clinical oncology. No predictive biomarkers have yet been found for any available treatment options. Previously, we identified SERPINB7 as a putative biomarker for PDAC and thus, herein, we aimed to validate our previous findings and assessed the predictive value of SERPINB7. Patients who underwent surgery and received gemcitabine (gem) or gemcitabine plus nab-paclitaxel (gem/nab) as adjuvant therapy, between 2011 and 2017, were included in this study (n = 57). Expression level of SERPINB7 was assessed in tumor tissue by immunohistochemistry (IHC) and RNA in situ hybridization (RNA ISH). Its association with disease-free survival (DFS) and overall survival (OS) was investigated. While IHC did not show any correlation between survival and the protein level of SERPINB7, RNA ISH revealed that expression of SERPINB7 was associated with a poor DFS (P = .01) and OS (P = .002) in the gem group but not in the gem/nab. Adjusted Cox-regression analysis confirmed the independent predictive value of SERPINB7 on OS (P = .006, HR: 3.47; 95% CI: 1.49-8.09) in the gem group. In conclusion, SERPINB7 was identified as the first predictive RNA biomarker for PDAC. This study suggests that patients who expressed SERPINB7 might receive another treatment than gem alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...