Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 171: 60-71, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35007695

ABSTRACT

Electrospun fibers emerged as promising drug delivery systems for various pharmaceutical applications due to their favorable properties. However, while for established drug delivery systems (e.g. tablets or capsules) standardized analytical procedures exist, the methodologies for characterization of electrospun fibers differ widely in the literature. Unfortunately, this situation impedes comparison of different studies and consequently hampers translation of the results into clinics. Thus, there is an urgent need for systematic studies evaluating different analytical techniques for their validity to characterize and differentiate different electrospun fibers. In this study, we aimed to identify a predictive and robust toolset of complementary analytical techniques allowing for comprehensive and discriminative evaluation of electrospun fibers. For this purpose, we fabricated two drug-loaded model formulations with contrastive physico-chemical properties and drug release kinetics. Different analytical techniques were applied for physico-chemical characterization of the spinning solutions as well as of the fibers. Each analytical method was evaluated with regard to discriminative power and individual limitations. The introduction of novel analytical approaches such as automated low-volume release testing may further advance the field of electrospinning. By combining complementary analytical methods, including spectral composition analysis, morphology visualization, characterization of physico-chemical properties and drug release kinetics, as well as the application of multivariate data analysis, we were able to establish a robust and predictive toolset, which can support comparability of future electrospinning studies and the translation from the lab bench into clinics.


Subject(s)
Drug Delivery Systems , Models, Theoretical , Nanofibers , Humans , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...