Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Struct Mol Biol ; 30(8): 1207-1215, 2023 08.
Article in English | MEDLINE | ID: mdl-37202476

ABSTRACT

In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.


Subject(s)
Dosage Compensation, Genetic , X Chromosome , Male , Female , Animals , Mice , Methylation , X Chromosome/genetics , Mammals/genetics , RNA Stability
3.
Nat Commun ; 13(1): 5570, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138008

ABSTRACT

Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by aberrant CD19 exon 2 processing, we herein investigate the regulatory code that controls CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to quantitatively disentangle the effects of all mutations in the region comprising CD19 exons 1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset represents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA Splice Sites , Alternative Splicing/genetics , Antigens, CD19/genetics , Antigens, CD19/metabolism , Epitopes/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Mutagenesis/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Polypyrimidine Tract-Binding Protein/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Isoforms/genetics , RNA Splicing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
PLoS Genet ; 18(6): e1010245, 2022 06.
Article in English | MEDLINE | ID: mdl-35657999

ABSTRACT

LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize the Vasa helicase to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis. Until now, proteins containing both LOTUS and Tudor domains in Caenorhabditis elegans have remained elusive. Here we describe LOTR-1 (D1081.7), which derives its name from its LOTUS and Tudor domains. Interestingly, LOTR-1 docks next to P granules to colocalize with the broadly conserved Z-granule helicase, ZNFX-1. The Tudor domain of LOTR-1 is required for its Z-granule retention. Like znfx-1 mutants, lotr-1 mutants lose small RNAs from the 3' ends of WAGO and mutator targets, reminiscent of the loss of piRNAs from the 3' ends of piRNA precursor transcripts in mouse Tdrd5 mutants. Our work shows that LOTR-1 acts with ZNFX-1 to bring small RNA amplifying mechanisms towards the 3' ends of its RNA templates.


Subject(s)
Caenorhabditis elegans , Epigenesis, Genetic , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins , Germ Cells/metabolism , RNA Helicases , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Tudor Domain
SELECTION OF CITATIONS
SEARCH DETAIL
...